Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and KPI equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 181-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The resolvent operator of the Linear Problem is determined as full Green function continued in the complex domain in two variables. An analog of the known Hilbert Identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the Nonstationary Schrödinger Equation as an example we show that all types of solutions of the Linear Problem as well as Spectral Data known in the literature are given as specific values of this unique function — resolvent. New form of Inverse Problem is formulated.
@article{TMF_1992_93_2_a0,
     author = {M. Boiti and F. Pempinelli and A. K. Pogrebkov and M. K. Polivanov},
     title = {Resolvent approach for two-dimensional scattering problems. {Application} to the nonstationary {Schr\"odinger} problem and {KPI} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {181--210},
     year = {1992},
     volume = {93},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a0/}
}
TY  - JOUR
AU  - M. Boiti
AU  - F. Pempinelli
AU  - A. K. Pogrebkov
AU  - M. K. Polivanov
TI  - Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and KPI equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 181
EP  - 210
VL  - 93
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a0/
LA  - ru
ID  - TMF_1992_93_2_a0
ER  - 
%0 Journal Article
%A M. Boiti
%A F. Pempinelli
%A A. K. Pogrebkov
%A M. K. Polivanov
%T Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and KPI equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 181-210
%V 93
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a0/
%G ru
%F TMF_1992_93_2_a0
M. Boiti; F. Pempinelli; A. K. Pogrebkov; M. K. Polivanov. Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schrödinger problem and KPI equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 181-210. http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a0/

[1] Boiti M., Pempinelli F., Pogrebkov A. K., Polivanov M. K., “Resolvent approach for the nonstationary Schrödinger equation (standard case of rapidly decreasing potential”, Nonlinear evolution equations and dynamical systems (Baia Verde, 1991), World Sci. Publ., River Edge, NJ, 1992, 97–107 | MR | Zbl

[2] Boiti M., Pempinelli F., Pogrebkov A. K., Polivanov M. C., Inverse problems, 8 (1992), 331 | DOI | MR | Zbl

[3] Zakharov V. E., Manakov S. V., Sov. Sci. Rev.–Phys. Rev., 1 (1979), 133; Manakov S. V., Physica D, 3 (1981), 420 | DOI | MR | Zbl

[4] Fokas A. S., Ablowitz M. J., Stud. Appl. Math., 69 (1983), 211 | DOI | MR | Zbl

[5] Novikov S. P., Manakov S. V., Pitaevskii L. P., Zakharov V. E., Theory of Solitons. The method of Inverse Scattering, Plenum, New York, 1984 | MR | Zbl

[6] Boiti M., Leon J., Pempinelli F., Phys. Lett. A, 141 (1989), 96, 101 | DOI | MR

[7] Xin Zhou, Comm. Math. Phys., 128 (1990), 551 | DOI | MR | Zbl