Free motion of $q$-deformed quantum particle
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 1, pp. 87-93
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper considers $q$ deformation of the Heisenberg algebra and a representation for it by finite-difference operators. It is shown that for the automorphism of the algebra corresponding to free motion there does not exist a polynomial Harniltonian generating it. The propertiesofplanewaves, i.e., the eigenfunctions of the $q$-deformed momentum operator, are also considered. It is noted that for $q=\exp(\pi i\vartheta)$, where $\vartheta$ is irrational, the eigenfunctions can be umneasurable.
@article{TMF_1992_93_1_a6,
author = {S. V. Kozyrev},
title = {Free motion of $q$-deformed quantum particle},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {87--93},
year = {1992},
volume = {93},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a6/}
}
S. V. Kozyrev. Free motion of $q$-deformed quantum particle. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 1, pp. 87-93. http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a6/
[1] Arefeva I. Ya., Volovich I. V., Phys. Lett., 268 (1991), 179 | DOI | MR
[2] Biedenharn L. C., J. Phys. A, 22 (1989), L983 | DOI | MR
[3] Macfarlane A. J., J. Phys. A, 22 (1989), 4581 | DOI | MR | Zbl
[4] Damaskinskii E. B., Kulish P. P., Zap. nauchn. semin. LOMI, 189, 1990 | MR
[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR