Gauge Nambu–Jona-Lasinio model as a low-energy approximation of QCD
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 1, pp. 67-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Nambu–Jona-Lasinio model in the regime of dynamical symmetry breaking we formulate principles for selecting $4$-fermion models as a low-energy approximation of QCD. On their basis, by means of an effective potential, we consider the possibility of their intrinsic stabilization at a finite cutoff momentum $\Lambda$. In the framework of the approach, we investigate the influence of the gluon condensate on the parameters of the model and the effective Lagrangian in the low-energy region.
@article{TMF_1992_93_1_a5,
     author = {A. A. Andrianov and V. A. Andrianov},
     title = {Gauge {Nambu{\textendash}Jona-Lasinio} model as a~low-energy approximation {of~QCD}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {67--86},
     year = {1992},
     volume = {93},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a5/}
}
TY  - JOUR
AU  - A. A. Andrianov
AU  - V. A. Andrianov
TI  - Gauge Nambu–Jona-Lasinio model as a low-energy approximation of QCD
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 67
EP  - 86
VL  - 93
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a5/
LA  - ru
ID  - TMF_1992_93_1_a5
ER  - 
%0 Journal Article
%A A. A. Andrianov
%A V. A. Andrianov
%T Gauge Nambu–Jona-Lasinio model as a low-energy approximation of QCD
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 67-86
%V 93
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a5/
%G ru
%F TMF_1992_93_1_a5
A. A. Andrianov; V. A. Andrianov. Gauge Nambu–Jona-Lasinio model as a low-energy approximation of QCD. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 1, pp. 67-86. http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a5/

[1] Gross D. J., Neveu A., Phys. Rev. D, 10:10 (1974), 3235–3253 ; Nambu Y., Jona-Lasinio G., Phys. Rev., 122:1 (1961), 345–348 ; Volkov M. K., Ann. Phys., 157:1 (1984), 282–303 ; Dhar A., Shankar R., Wadia S. R., Phys. Rev. D, 31:12 (1985), 3256–3267 ; Ebert D., Reinhardt H., Nucl. Phys. B, 271:1 (1986), 188–226 ; Berhard V., Jaffe R. L., Meissner U.-G., Nucl. Phys. B, 308:4 (1988), 753–785 ; Wakamatsu M., Ann. Phys., 193:2 (1989), 287–325 ; Praschifka J., Cahill R. T., Roberts C. D., Int. J. Mod. Phys. A, 4:3 (1989), 719–735 ; Ball R. D., Int. J. Mod. Phis. A, 5:23 (1990), 4391–4426 ; Klimit S., Lutz M., Vogl U., Weise W., Nucl.Phys. A, 516:3, 4 (1990), 429–495 | DOI | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | DOI | MR | DOI | DOI | DOI

[2] Callan C. G., Coleman Jr. S., Jackiw R., Ann. Phys., 59:1 (1970), 42–73 | DOI | MR | Zbl

[3] Kadanoff L. P., Physics, 2:6 (1966), 263–272 | MR

[4] Green M. S., J. Chem. Phys., 22:3 (1954), 398–413 ; Боголюбов Н. Н., Избранные труды, т. 2, Наукова думка, Киев, 1970 ; Попов В. Н., Континуальные интегралы в квантовой теории поля и статистической физике, Атомиздат, М., 1976 | DOI | MR | MR | Zbl | MR

[5] Andrianov A. A., Bonora L., Nucl. Phys. B, 233:1 (1984), 232–261 | DOI

[6] Shifman M. A., Vainshtein A. I., Zakharov V. I., Nucl. Phys. B, 147:5 (1979), 385–447 | DOI

[7] Bardeen W., Hill C., Lindner M., Phys. Rev. D, 41:5 (1990), 1647–1660 | DOI

[8] Migdal A. A., Shifman M. A., Phys. Lett. B, 114 (1982), 145–149 | DOI

[9] Andrianov A. A., Andrianov V. A., Novozhilov V. Yu., Novozhilov Yu. V., Phys. Lett. B, 186:3, 4 (1987), 401–404 | DOI | MR