Homogeneous point transformation and reparametrization of paths in path integrals for fourth-order differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 1, pp. 17-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that one can generalize the procedure of a stochastic change of time to random processes associated with fourth-order differential equations. Using this procedure, and also the obtained analog of the Girsanov–Cameron–Martin formula, we derive a formula for transforming a path integral (as an integral with respect to a quasimeasure) under path reparametrization. By means of the reparametrization formula and the formula for transforming the path integral under a homogeneous point transformation of the phase space we obtain an integral relation, expressed in terms of symbols of path integrals, between the Green's functions of two quantum-mechanical problems associated with fourth-order differential equations.
@article{TMF_1992_93_1_a1,
     author = {S. N. Storchak},
     title = {Homogeneous point transformation and reparametrization of paths in path integrals for fourth-order differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--31},
     year = {1992},
     volume = {93},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a1/}
}
TY  - JOUR
AU  - S. N. Storchak
TI  - Homogeneous point transformation and reparametrization of paths in path integrals for fourth-order differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 17
EP  - 31
VL  - 93
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a1/
LA  - ru
ID  - TMF_1992_93_1_a1
ER  - 
%0 Journal Article
%A S. N. Storchak
%T Homogeneous point transformation and reparametrization of paths in path integrals for fourth-order differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 17-31
%V 93
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a1/
%G ru
%F TMF_1992_93_1_a1
S. N. Storchak. Homogeneous point transformation and reparametrization of paths in path integrals for fourth-order differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a1/

[1] Duru I. H., Kleinert N., Phys. Lett. B, 84 (1979), 185–188 ; Storchak S. N., IHEP preprint 82-20, IHEP, Serpukhov, 1982 ; Duru I. H., Phys. Rev. D, 28 (1983), 2689–2692 ; Cay P. Y., Inomata A., Wilson R., Phys. Lett. A, 96 (1983), 117–120 ; Pak N. A., Sökmen I., Phys. Lett. A, 100 (1984), 327–332 ; Erkos S., Severe R., Phys. Rev. D, 30 (1984), 2117–2120 ; Steiner F., Phys. Lett. A, 106 (1984), 356–362 ; Pak N. K., Sökmen I., Phys. Rev. A, 30 (1984), 1629–1635 ; Storchak S. N., IHEP preprint 88-202, IHEP, Serpukhov, 1988 ; Blanchard Ph., Sirugue M., J. Math. Phys., 22 (1981), 1372–1376 ; De Witt-Morette C., Young A., Ann. Phys., 169 (1986), 140–166 ; Storchak S. N., IHEP preprint 86-143, IHEP, Serpukhov, 1986; Сторчак С. Н., ТМФ, 75:3 (1988), 403–415 ; Castrigiano D. P. L., Stärk F., J. Math. Phys., 30 (1989), 2785–2788 | DOI | MR | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[2] Storchak S. N., Phys. Lett. A, 135 (1989), 77–85 | DOI | MR

[3] Bollini C. G., Giambiagi J. J., Helman J. S., Nuovo Cim. A, 101 (1989), 583–589 | DOI | MR

[4] Hawking S. W., Preprint University of Cambridge, Department of Applied Math. and Theor. Phys., Cambridge, september 1985 | MR

[5] Bollini C. G., Giambiagi J. J., Phys. Rev. D, 32 (1985), 3316–3318 ; Delborgo R., Prasad V. B., J. Phys. G., 1 (1975), 377 | DOI | MR | DOI

[6] Nishioka K., Japan. J. Math., 11 (1985), 59–102 ; J. Math. Soc. Japan, 39 (1987), 209–231 | MR | Zbl | DOI | MR | Zbl

[7] Blazhievskii L. F., TMF, 40:1 (1979), 51–63 | MR | Zbl

[8] Krylov V. Yu., DAN SSSR, 132 (1960), 1254–1257 ; Miyamoto M., Proc. Japan. Acad., 40 (1964), 455–459 ; 42 (1966), 70–74 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[9] Hochberg K. J., Ann. Prob., 6 (1978), 433–458 | DOI | MR | Zbl

[10] Motoo M., “An analogue to the stochastic integral for $\partial/\partial t=-\Delta\sp 2$”, Stochastic analysis and applications, Adv. Probab. Related Topics, 7, Dekker, New York, 1984, 323–338 | MR

[11] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl