Jacobi algebra and potentials generated by it
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 1, pp. 3-16
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the Jacobi algebra $QJ(3)$ generates potentials that admit exact solution in relativistic and nonrelativistic quantum mechanics. Being a spectrum-generatingdynamic symmetry algebra and possessing the ladder property, $QJ(3)$ makes it possible to find the wave functions in the coordinate representation. The exactly solvable potentials specified in explicit form are regarded as a special case of a larger class of exactly solvable potentials specified implicitly. The connection between classical and quantum problems possessing exact solutions is obtained by means of $QJ(3)$.
@article{TMF_1992_93_1_a0,
author = {I. M. Lutsenko},
title = {Jacobi algebra and potentials generated by it},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--16},
publisher = {mathdoc},
volume = {93},
number = {1},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a0/}
}
I. M. Lutsenko. Jacobi algebra and potentials generated by it. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TMF_1992_93_1_a0/