An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 3, pp. 387-403
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the sine-Gordon equation in laboratory coordinates with both $x$ and $t$ in $[0,\infty)$. We assume that $u(x,0)$, $u_t(x,0)$, $u(0,t)$ are given, and that they satisfy
$u(x,0) \to 2\pi q$, $u_t(x,0)\to 0$, for large $x$, $u(0,t) \to 2\pi p$ for large $t$,
where $q$, $p$ are integers. We also assume that $u_x(x,0)$, $u_t(x,0)$, $u_t(0,t)$,
$u(0,t)-2\pi p$, $u(x,0)-2\pi q \in L_2$. We show that the solution of this initial-boundary value problem can be reduced to solving a linear integral equation which is always solvable. The
asymptotic analysis of this integral equation for large $t$, shows how the boundary conditions can generate solitons.
@article{TMF_1992_92_3_a2,
author = {A. S. Fokas and A. R. Its},
title = {An initial-boundary value problem for the {sine-Gordon} equation in laboratory coordinates},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--403},
publisher = {mathdoc},
volume = {92},
number = {3},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a2/}
}
TY - JOUR AU - A. S. Fokas AU - A. R. Its TI - An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 387 EP - 403 VL - 92 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a2/ LA - en ID - TMF_1992_92_3_a2 ER -
A. S. Fokas; A. R. Its. An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 3, pp. 387-403. http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a2/