An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 3, pp. 387-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the sine-Gordon equation in laboratory coordinates with both $x$ and $t$ in $[0,\infty)$. We assume that $u(x,0)$, $u_t(x,0)$, $u(0,t)$ are given, and that they satisfy $u(x,0) \to 2\pi q$, $u_t(x,0)\to 0$, for large $x$, $u(0,t) \to 2\pi p$ for large $t$, where $q$, $p$ are integers. We also assume that $u_x(x,0)$, $u_t(x,0)$, $u_t(0,t)$, $u(0,t)-2\pi p$, $u(x,0)-2\pi q \in L_2$. We show that the solution of this initial-boundary value problem can be reduced to solving a linear integral equation which is always solvable. The asymptotic analysis of this integral equation for large $t$, shows how the boundary conditions can generate solitons.
@article{TMF_1992_92_3_a2,
     author = {A. S. Fokas and A. R. Its},
     title = {An initial-boundary value problem for the {sine-Gordon} equation in laboratory coordinates},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {387--403},
     year = {1992},
     volume = {92},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a2/}
}
TY  - JOUR
AU  - A. S. Fokas
AU  - A. R. Its
TI  - An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 387
EP  - 403
VL  - 92
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a2/
LA  - en
ID  - TMF_1992_92_3_a2
ER  - 
%0 Journal Article
%A A. S. Fokas
%A A. R. Its
%T An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 387-403
%V 92
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a2/
%G en
%F TMF_1992_92_3_a2
A. S. Fokas; A. R. Its. An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 3, pp. 387-403. http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a2/

[1] Fokas A. S., Proceedings of the III Potsdam–V Kiev International Workshop (1991), Springer-Verlag, Berlin, 1992

[2] Rajaraman R., Solitons and Instantons, North Holland, 1982 | MR | Zbl

[3] Jain A. K., Likharev K. K., Lukens J. E., Sauvageau J. E., Phys. Rep., 109 (1984), 309 | DOI

[4] Yukon S. P., Liu N. C., IEEE Transactions on Magnets, 27 (1991), 2736 | DOI

[5] Zakharov V. E., Shabat A. B., Funkts. Anal. Prilozh., 13:3 (1979), 13–22 (Russian) | MR | Zbl

[6] Manakov S. V., Sov. Phys.–JETP, 38:4 (1974), 693–696 | MR

[7] Its A. R., Sov. Math. Dokl., 24:3 (1981), 452–456 | Zbl

[8] Deift P., Zhou X., Announcement in Bull. Amer. Math. Soc., 26 (1992), 119–123 | DOI | MR | Zbl

[9] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., Phys. Rev. Lett., 30 (1973), 1262–1964 | DOI | MR

[10] Zakharov V. E., Faddeev L. D., Takhtajan L. A., Dokl. Akad. Nauk SSSR, 219:6 (1974), 1334–1337 (Russian) | MR | Zbl

[11] Zhou X., SIAM J. Math. Anal., 20 (1989), 966–986 | DOI | MR | Zbl