@article{TMF_1992_92_3_a12,
author = {L. Michel and Ya. S. Stanev and I. T. Todorov},
title = {D-E classification of the local extensions of $SU_2$ current algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {507--521},
year = {1992},
volume = {92},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a12/}
}
TY - JOUR AU - L. Michel AU - Ya. S. Stanev AU - I. T. Todorov TI - D-E classification of the local extensions of $SU_2$ current algebras JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 507 EP - 521 VL - 92 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a12/ LA - en ID - TMF_1992_92_3_a12 ER -
L. Michel; Ya. S. Stanev; I. T. Todorov. D-E classification of the local extensions of $SU_2$ current algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 3, pp. 507-521. http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a12/
[1] Kastler D. (ed.), The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, Proc. Convegno Int. Palermo, World Scientific, Singapore, 1990 ; Haag R., Local Quantum Physics. Fields, Particles, Algebras, Springer, Berlin, 1992 | MR | Zbl | MR | Zbl
[2] Buchholz D., Mack G., Todorov I. T., “Localized automorphisms of the ${\rm U}(1)$-current algebra on the circle: an instructive example”, The algebraic theory of superselection sectors (Palermo, 1989), World Sci. Publ., River Edge, NJ, 1990, 356–378 ; Buchholz D., Mack G., Paunov R. R., Todorov I. T., “An algebraic approach to the classification of local conformal field theories”, IX-th International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bristol, 1989, 299–305 ; Nucl. Phys. B, 5 (1988), 20 | MR | MR | DOI | MR
[3] Mack G., “Introduction to conformal invariant quantum field theory in twop and more dimensions”, Nonperturbative Quantum Field Theory, eds. G.'t Hooft et al., Plenum Press, New York, 1988, 353–383 | DOI | MR
[4] Furlan P., Sotkov G. M., Todorov I. T., Riv. Nuovo Cim., 12:6 (1989), 1–202 | DOI | MR
[5] Buchholz D., Shultz-Mirbach H., Rev. Math. Phys., 2 (1990), 105 | DOI | MR | Zbl
[6] Cardy J. L., Nucl. Phys. B, 366 (1991), 403 ; Nucl. Phys. B, 275:17 (1986), 200 | DOI | MR | DOI | MR
[7] Capelli A., Itzykson C., Zuber J.-B., Nucl. Phys. B, 280:18 (1987), 445 | DOI | MR
[8] Seinberg N., Witten E., Nucl. Phys. B, 276 (1986), 272 | DOI | MR
[9] Nahm W., Int. J. Mod. Phys. A, 6 (1991), 2837 | DOI | MR | Zbl
[10] Bouwknegt P., Phys. Lett. B, 184 (1987), 369 | DOI | MR
[11] Schellekens A. N., Yankielowicz, Nucl. Phys. B, 327 (1989), 673 ; Phys. Lett. B, 227 (1989), 387 ; Int. J. Mod. Phys. A, 5 (1990), 2903 | DOI | MR | DOI | MR | DOI | MR | Zbl
[12] Knizhnik V. G., Zamolodchikov A., Nucl. Phys. B, 247 (1984), 83 | DOI | MR | Zbl
[13] Zamolodchikov A. B., Fateev V. A., Sov. J. Nucl. Phys., 43 (1986), 657
[14] Stanev Ya. S., Todorov I. T., Hadjiivanov L. K., Phys. Lett. B, 276 (1992), 87 | DOI | MR
[15] Belavin A. A., Polyakov I. T., Zamolodchikov A. B., Nucl. Phys. B, 241 (1984), 333 | DOI | MR | Zbl
[16] Michel L., “Invariants polynomiaux des groupes de symetrie moleculaire et cristallographique”, Group Theoretical Methods in Physics (Proc. of the Fifth Int. Colloquium), Academic Press, New York, 1977, 75–91 ; Jaric M. V., Michel L., Sharp R. T., “Zeros of covariant vector fields for the point groups: invariant formulation”, J. Physique, 45:1 (1984), 1–27 | DOI | MR | DOI | MR
[17] Chevalley C., Amer. J. Math., 77 (1955), 778 | DOI | MR | Zbl
[18] Michel L., “Covariant symmetric non-associative algebras on group representations”, Symmetry in Nature, v. II, Scuola Normale Superiore, Pisa, 1989, 537–5488
[19] Gepner D., Witten E., Nucl. Phys. B, 278 (1986), 493 | DOI | MR
[20] Furlan P., Stanev Ya. S., Todorov I. T., Lett. Math. Phys., 22 (1991), 307 | DOI | MR | Zbl
[21] Bauer M., Di Franscesco Ph., Itzykson C., Zuber J.-B., Nucl. Phys. B, 362 (1991), 515 | DOI | MR | Zbl
[22] Moore G., Seiberg N., Nucl. Phys. B, 313 (1989), 16 | DOI | MR