Open bosonic string amplitudes
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 3, pp. 498-506 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of the partially $U(1)$ compactified scalar massless field on the domain on the compact Riemann surface with Nambu–Goto action is defined. The partition function is determined completely by a choice of the finite dimensional approximations. The correlation functions are the correctly defined objects of the theory. The averages of the correlation function asymptotic values provide the amplitudes. The Nielsen's conjecture for the scattering amplitudes is correctly proved.
@article{TMF_1992_92_3_a11,
     author = {Yu. M. Zinoviev},
     title = {Open bosonic string amplitudes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {498--506},
     year = {1992},
     volume = {92},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a11/}
}
TY  - JOUR
AU  - Yu. M. Zinoviev
TI  - Open bosonic string amplitudes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 498
EP  - 506
VL  - 92
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a11/
LA  - en
ID  - TMF_1992_92_3_a11
ER  - 
%0 Journal Article
%A Yu. M. Zinoviev
%T Open bosonic string amplitudes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 498-506
%V 92
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a11/
%G en
%F TMF_1992_92_3_a11
Yu. M. Zinoviev. Open bosonic string amplitudes. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 3, pp. 498-506. http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a11/

[1] Fairlie D. B., Nielsen H. B., “An analogue model for KSV theory”, Nucl. Phys. B, 20 (1970), 637–651 | DOI

[2] Lovelace C., “$M$-loop generalized Veneziano formula”, Phys. Lett. B, 32 (1970), 703–708 | DOI | MR

[3] Alessandrini V., “A General Approach to Dual Multiloop Diagrams”, Nuovo Cim. A, 2 (1971), 321–352 | DOI | MR

[4] Burnside W., “On a Class of Automorphic Functions”, Proc. London Math. Soc., 23 (1892), 49–88 | DOI | MR

[5] Farkas H. M., Kra I., Riemann surfaces, Springer, New York-Heidelberg-Berlin, 1980 | MR

[6] Green M. B., Schwarz J. H., Witten E., Superstring theory, v. 1, 2, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[7] Gel'fand I. M., Shilov G. E., Generalized functions, v. 1, Academic Press, New York, 1964 | MR

[8] Zinoviev Yu. M., “Partially $U(1)$ Compactified Scalar Massless Field on the Compact Riemann Surface and the Bosonic String Amplitudes”, Commun. Math. Phys., to appear | MR