Complete integrability, gauge equivalence and Lax representation of inhomogeneous nonlinear evolution equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 3, pp. 374-386
Voir la notice de l'article provenant de la source Math-Net.Ru
The gauge equivalence between the inhomogeneous versions of the nonlinear Schrödinger and the Heisenberg ferromagnet equations is studied. An unexplicit criterion for integrability is proposed. Examples of gauge equivalent inhomogeneous nonlinear evolution equations are presented. It is shown that in the nonintegrable cases the $M$-operators in their Lax representations possess unremovable pole singularities lying on the spectrum of the $L$-operators.
@article{TMF_1992_92_3_a1,
author = {V. S. Gerdjikov},
title = {Complete integrability, gauge equivalence and {Lax} representation of inhomogeneous nonlinear evolution equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {374--386},
publisher = {mathdoc},
volume = {92},
number = {3},
year = {1992},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a1/}
}
TY - JOUR AU - V. S. Gerdjikov TI - Complete integrability, gauge equivalence and Lax representation of inhomogeneous nonlinear evolution equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 374 EP - 386 VL - 92 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a1/ LA - en ID - TMF_1992_92_3_a1 ER -
%0 Journal Article %A V. S. Gerdjikov %T Complete integrability, gauge equivalence and Lax representation of inhomogeneous nonlinear evolution equations %J Teoretičeskaâ i matematičeskaâ fizika %D 1992 %P 374-386 %V 92 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a1/ %G en %F TMF_1992_92_3_a1
V. S. Gerdjikov. Complete integrability, gauge equivalence and Lax representation of inhomogeneous nonlinear evolution equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 3, pp. 374-386. http://geodesic.mathdoc.fr/item/TMF_1992_92_3_a1/