Turbulence as a nonequilibrium phase transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 2, pp. 293-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The transition from laminar to turbulent flow is studied on the basis of an exact equation for the averaged velocity and an approximate nonlinear equation for the Reynolds stress $\tau$. The stationary state can be determined from the condition of minimum of a functional that is analogous to the Landau functional in the theory of phase transitions. The Reynolds stress plays the role of a parameter. It is shown that a nontrivial solution for $\tau$ corresponding to a steady turbulent regime exists only for Reynolds numbers $R$ that exceed a certain critical value $R_\mathrm{cr}$. The results of a numerical calculation of the profile of the averaged velocity, the friction coefficient, and the Reynolds stress in a wide range of values of $R$ agree well with experimental data for channel flow.
@article{TMF_1992_92_2_a7,
     author = {D. N. Zubarev and V. G. Morozov and O. V. Troshkin},
     title = {Turbulence as a~nonequilibrium phase transition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {293--311},
     year = {1992},
     volume = {92},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a7/}
}
TY  - JOUR
AU  - D. N. Zubarev
AU  - V. G. Morozov
AU  - O. V. Troshkin
TI  - Turbulence as a nonequilibrium phase transition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 293
EP  - 311
VL  - 92
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a7/
LA  - ru
ID  - TMF_1992_92_2_a7
ER  - 
%0 Journal Article
%A D. N. Zubarev
%A V. G. Morozov
%A O. V. Troshkin
%T Turbulence as a nonequilibrium phase transition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 293-311
%V 92
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a7/
%G ru
%F TMF_1992_92_2_a7
D. N. Zubarev; V. G. Morozov; O. V. Troshkin. Turbulence as a nonequilibrium phase transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 2, pp. 293-311. http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a7/

[1] Dzhozef D., Ustoichivost dvizheniya zhidkosti, Mir, M., 1981

[2] Zubarev D. N., Morozov V. G., Troshkin O. V., DAN SSSR, 290:2 (1986), 313–317 | MR | Zbl

[3] U. Frost, T. Moulden(red.), Turbulentnost. Printsipy i primeneniya, Mir, M., 1980

[4] Klimontovich Yu. L., Engel-Kherbert X., ZhTF, 54:3 (1984), 440–449

[5] Klimontovich Yu. L., Turbulentnoe dvizhenie i struktura khaosa: novyi podkhod k statisticheskoi teorii otkrytykh sistem, Nauka, M., 1990 | MR

[6] Kont-Bello Zh., Turbulentnoe techenie v kanale s parallelnymi stenkami, Mir, M., 1968

[7] Nevzglyadov V., DAN SSSR, 47:3 (1945), 169–173 | MR

[8] Dryden H. L., “Recent advances in the mechanics of boundary layer flow”, Advances in Applied Mechanics, v. 1, Academic Press, N.-Y., 1948, 1–40 | DOI | MR

[9] Lee S. C., Harsha P. T., AIAA Journal, 8 (1970), 1026–1032 | DOI

[10] Reinchart H., ZAMM, 31 (1951), 208–219 | DOI

[11] Patel V. C., Head M. R., part 1, J. Fluid Mech., 38 (1969), 181–201 | DOI

[12] Beavers G. S., Sparrow E. M., J. Basic Engn., 93 (1971), 296–299 | DOI

[13] Troshkin O. V., Physica A, 168:2 (1990), 881–899 | DOI | MR | Zbl

[14] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | Zbl

[15] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | MR | Zbl