Semiclassical maslov asymptotics with complex phases. I. General approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 2, pp. 215-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of constructing semiclassical asymptotics with complex phases is presented for multidimensional spectral problems (scalar, vector, and with operator-valued symbol) corresponding to both classically integrable and classically nonintegrable Hamiltonian systems. In the first case, the systems admit families of invariant Lagrangian tori (of complete dimension equal to the dimensionn of the configuration space) whose quantization in accordance with the Bohr–Sommerfeld rule with allowance for the Maslov index gives the semiclassical series in the region of large quantum numbers. In the nonintegrable case, families of Lagrangian tori with complete dimension do not exist. However, in the region of regular (nonchaotic) motion, such systems do have invariant Lagrangian tori of dimensionk (incomplete dimension). The construction method associates the families of such tori with spectral series covering the region of intermediate quantum numbers. The construction includes, in particular, new quantization conditions of Bohr–Sommerfeld type in which other characteristics of the tori appear instead of the Maslov index. Applications and also generalizations of the theory to Lie groups will be presented in subsequent publications of the series.
@article{TMF_1992_92_2_a4,
     author = {V. V. Belov and S. Yu. Dobrokhotov},
     title = {Semiclassical maslov asymptotics with complex {phases.~I.~General} approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {215--254},
     year = {1992},
     volume = {92},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a4/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - S. Yu. Dobrokhotov
TI  - Semiclassical maslov asymptotics with complex phases. I. General approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 215
EP  - 254
VL  - 92
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a4/
LA  - ru
ID  - TMF_1992_92_2_a4
ER  - 
%0 Journal Article
%A V. V. Belov
%A S. Yu. Dobrokhotov
%T Semiclassical maslov asymptotics with complex phases. I. General approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 215-254
%V 92
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a4/
%G ru
%F TMF_1992_92_2_a4
V. V. Belov; S. Yu. Dobrokhotov. Semiclassical maslov asymptotics with complex phases. I. General approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 2, pp. 215-254. http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a4/

[1] Einshtein A., Sobr. nauchnykh trudov, Nauka, M., 1973, 260–265

[2] Pauli V., Obschie printsipy volnovoi mekhaniki, Gostekhizdat, M., 1947

[3] Brillyuen L., Atom Bora, ONTI, L.-M., 1935

[4] Keller J. B., Ann. Phys., 4:12 (1958), 180–188 | DOI | MR | Zbl

[5] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 | MR

[6] Buslaev B. C., Funkts. analiz i ego prilozh., 3:3 (1969), 17–31 | MR | Zbl

[7] Vainberg V. R., UMN, 30:2 (1975), 3–55 | MR | Zbl

[8] Kogan V. R., Izv. VUZov. Radiofizika, 12:11 (1969), 11–17

[9] Kucherenko V. V., TMF, 1:3 (1969), 384–406 | MR

[10] Lazutkin V. F., Vest. LGU, 2:7 (1969), 23–24 | MR | Zbl

[11] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[12] Lere Zh., Lagranzhev analiz i kvantovaya mekhanika, Mir, M., 1981 | MR

[13] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[14] Mischenko A. S., Sternin B. Yu., Shatalov V. E., Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[15] Protas Yu. I., Matem. sb., 117:4 (1982), 494–515 | MR | Zbl

[16] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[17] Weinstein A., Ann. Math., 98 (1973), 377–410 | DOI | MR | Zbl

[18] Goldman I. I., Krivchenkov V. O., Sbornik zadach po kvantovoi mekhanike, Gostekhizdat, M., 1957

[19] Flyugge Z., Zadachi po kvantovoi mekhanike, t. 1, Mir, M., 1974

[20] Davydov A. S., Kvantovaya mekhanika, Nauka, M., 1969 | MR

[21] Sokolov A. A., Ternov I. M., Relyativistskii elektron, Nauka, M., 1974; Тернов И. М., Михайлин В. В., Халилов В. Р., Синхротронное излучение и его применение, МГУ, М., 1985

[22] Gutzwiller M. C., Chaos in Classical and Quantum Mechanics, Springer-Verlag, New-York, 1990 | MR | Zbl

[23] Nekhoroshev N. N., Tr. MMO, 26, 1972, 181–198 | Zbl

[24] Smeil S., UMN, 27:2 (1972), 77–133 | MR | Zbl

[25] Arnold V. I., Kozlov V. V., Neishtadt A. I., Itogi nauki i tekhniki. Sovr. problemy metematiki. Fundam. napravleniya, 3, VINITI, M., 1985 | MR

[26] Marsden J., Wenstein A., Repts. Math. Phys., 5:1 (1974), 121–130 | DOI | MR | Zbl

[27] Maslov V. P., DAN SSSR, 195:3 (1970), 551–554 | MR | Zbl

[28] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[29] Krakhnov A. D., UMN, 31:3 (1976), 217–218 | MR | Zbl

[30] Dobrokhotov S. Yu., Maslov V. P., Sovr. problemy matematiki, 5, VINITI, 1975, 141–211 ; 23, 1983, 137–222 | MR | Zbl | MR | Zbl

[31] Babich V. N., Buldyrev B. C., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[32] Denisov A. A., Sb. diff. ur-nii i ikh prilozheniya, Dnepropetrovskii GU, 1985, 14–20

[33] Babich V. M., Ulin V. V., Zap. nauchn. semin. LOMI, 117, 1981, 5–11 | MR

[34] Popov M. M., Zap. nauchn. semin. LOMI, 104, 1981, 195–216 | MR | Zbl

[35] Babich V. M., Buldyrev B. C., Molotkov I. A., Prostranstvenno-vremennoi luchevoi metod. Lineinye i nelineinye volny, LGU, L., 1985 | MR

[36] Dobrokhotov S. Yu., Maslov V. P., Sovr. probl. matem., 15, VINITI, 1980, 3–94 ; Маслов В. П., Данилов В. Г., Совр. пробл. матем., 6, ВИНИТИ, 1975, 5–132 | MR | Zbl | MR | Zbl

[37] Dobrokhotov S. Yu., DAN SSSR, 289:3 (1986), 575–579 | MR

[38] Dobrokhotov S. Yu., Zhevandrov P. N., Asimptoticheskie razlozheniya i kanonicheskii operator Maslova v lineinoi teorii poverkhnostnykh gravitatsionnykh voln. Zadacha Koshi–Puassona i zakhvachennye volny, preprint No 329, IPMekh AN SSSR, M., 1988 | MR

[39] Belov V. V., Ryabov I. G., Kvaziklassicheskie traektorno-kogerentnye sostoyaniya dlya skalyarnoi relyativistskoi chastitsy pri kanalirovanii, preprint No 19, SO AN SSSR, Tomsk, 1988

[40] Belov V. V., Volkova Y. L., Investigation of the Zeeman effect in qusiclassical trajectorycoherent approximation, preprint No 35, SO AN SSSR, Tomsk, 1991 | MR

[41] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[42] TIIER, 52 (1974), 120

[43] Baier V. N., Katkov V. M., ZhETF, 1 (1966), 81–88

[44] Belov V. V., Dobrokhotov S. Yu., DAN SSSR. Matematika, 298:5 (1988), 1037–1042 | MR | Zbl

[45] Belov V. V., Dobrokhotov S. Yu., Kvaziklassicheskie asimptotiki Maclova v spektralnykh kvantovykh zadachakh, sootvetstvuyuschikh chastichno integriruemym gamiltonovym sistemam, preprint, MIAN, M., 1988 | MR

[46] Belov V. V., Dobrokhotov S. Yu., Proc. of XVIII Int. Coll. Group Theory Meth.Phys., 187, Nova Science Publ. Inc., New-York, 1991, 185–188

[47] Belov V. V., Priblizhennye i tochnye resheniya uravnenii kvantovoi mekhaniki v elektromagnitnom pole, Kand. diss., MIEM, M., 1977

[48] Bagrov V. G., Belov V. V., Ternov I. M., TMF, 50:3 (1982), 390–396 | MR

[49] Bagrov V. G., Belov V. V., Ternov I. M., J. Math. Phys., 24:12 (1983), 2855–2859 | DOI | MR

[50] Belov V. V., Maslov V. P., DAN SSSR, 305:3 (1989), 574–580 ; 311 (1990), 849–854 | MR | MR

[51] Arnold V. I., Funkts. analiz i ego prilozh., 6:2 (1972), 12–20 | MR | Zbl

[52] Bagrov V. G., Belov V. V., Maslov V. P., DAN SSSR, 308:1 (1989), 88–91 | MR

[53] Karasev M. V., Funkts. analiz i ego prilozh., 20:1 (1986), 21–32 | MR | Zbl

[54] Karasev M. V., Maslov V. P., UMN, 39 (1984), 115–173 | MR | Zbl

[55] Giiemin V., Sternberg S., Geometricheskie asimptotiki, MIR, M., 1981 | MR

[56] Hess H., Lect. Notes in Phys., 139 (1981), 1–35 | DOI | MR

[57] Magneron B., J. Funct. Anal., 59:1 (1984), 90–122 | DOI | MR | Zbl

[58] Karasev M. V., Kvantovaya reduktsiya na orbity algebr simmetrii i zadacha Erenfesta, preprint 87-157 R, ITF AN USSR, Kiev, 1988

[59] Trev F., Integralnye operatory Fure, Mir, M., 1987 | MR

[60] Galitskii V. M., Karnakov B. N., Kogan V. I., Zadachi po kvantovoi mekhanike, Nauka, M., 1981 | MR

[61] Dubrovin V. A., Novikov S. P., Fomenko A. G., Sovremennaya geometriya, Nauka, M., 1986 | MR

[62] Vorobev Yu. M., Mat. zametki, 48:6 (1990), 29–37 | MR | Zbl

[63] Vorobev Yu. M., Dobrokhotov S. Yu., Krakhnov A. O., Tezisy mezhd. konf. po topologii i ee prilozh., In-t mat. i mekh. AN AzSSR, Baku, 1987 | Zbl

[64] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Fizmatgiz, M., 1958 | Zbl

[65] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[66] Kuksin S. B., Mat. zametki, 45:5 (1989), 38–49 | MR

[67] Kolmogorov A. N., DAN SSSR, 98:4 (1954), 527–530 | MR | Zbl

[68] Arnold V. I., UMN, 18:6 (1963), 91–192 | MR | Zbl

[69] Berry M. V., Proc. Roy. Soc. London. A, 392:1802 (1984), 45–57 | DOI | MR | Zbl

[70] Littlejohn R. G., Phys. Rev. Lett., 66:22 (1991), 2839–2842 | DOI | MR | Zbl

[71] Babich B. M., Vest. LGU. Matem. Mekhan. Astron., 1967, no. 7, 38–42

[72] Dobrokhotov S. Yu., Mat. zametki, 44:3 (1988), 319–340 | MR | Zbl

[73] Born M., Lektsii po volnovoi mekhanike, ONTI, M., 1934

[74] Shiff L., Kvantovaya mekhanika, IL, M., 1957

[75] Arnold V. I., Funkts. analiz i ego prilozh., 1:1 (1967), 1–14 | MR | Zbl

[76] Arnold V. I., Funkts. analiz i ego prilozh., 6:3 (1972), 61–62 | MR

[77] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[78] Nikitin E. E., Teoriya elementarnykh atomno-molekulyarnykh protsessov v gazakh, Khimiya, M., 1970