Quantum inverse scattering method on a spacetime lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 2, pp. 207-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The formalism of the quantum inverse scattering method is developed on a lattice in spacetime that imitates light cone coordinates. The zero-curvature representation makes it possible to introduce in a natural manner operators of displacement along the coordinate axes. The method is illustrated for the example of the sine-Gordon system.
@article{TMF_1992_92_2_a3,
     author = {A. Yu. Volkov and L. D. Faddeev},
     title = {Quantum inverse scattering method on a~spacetime lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--214},
     year = {1992},
     volume = {92},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a3/}
}
TY  - JOUR
AU  - A. Yu. Volkov
AU  - L. D. Faddeev
TI  - Quantum inverse scattering method on a spacetime lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 207
EP  - 214
VL  - 92
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a3/
LA  - ru
ID  - TMF_1992_92_2_a3
ER  - 
%0 Journal Article
%A A. Yu. Volkov
%A L. D. Faddeev
%T Quantum inverse scattering method on a spacetime lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 207-214
%V 92
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a3/
%G ru
%F TMF_1992_92_2_a3
A. Yu. Volkov; L. D. Faddeev. Quantum inverse scattering method on a spacetime lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 2, pp. 207-214. http://geodesic.mathdoc.fr/item/TMF_1992_92_2_a3/

[1] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., TMF, 40:2 (1979), 194–220 | MR

[2] Takhtadzhyan L. A., Faddeev L. D., UMN, 34 (1979), 13 | MR

[3] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[4] Tarasov V. O., Takhtadzhyan L. A., Faddeev L. D., TMF, 57:2 (1983), 163–181 | MR

[5] Hirota R., J. Phys. Soc. Japan, 43 (1977), 2079 | DOI | MR | Zbl

[6] Papageorgiou V. G., Nijhoff F. W., Capel H. W., Phys. Lett. A, 147 (1990), 106 | DOI | MR

[7] Nijhoff F. W., Papageorgiou V. G., Capel H. W., Quantum Groups, ed. P. Kulish, Springer, 1992 | MR

[8] Faddeev L. D., Reshetikhin N. Yu., Ann. Phys., 167 (1986), 227 | DOI | MR

[9] Destri C., De Vega H. J., Nucl. Phys. B, 290 (1987), 363 | DOI | MR

[10] Faddeev L. D., Fields and Particles, eds. H. Mitter, W. Schweiger, Springer, 1990 | Zbl

[11] Zakharov V. E., Mikhailov A. V., ZhETF, 69 (1975), 1654

[12] Sklyanin E. K., Zap.nauch.semin. LOMI, 95, 1980, 53 | MR | Zbl

[13] Izergin A. G., Korepin V. E., Lett. Math. Phys., 5 (1981), 199 | DOI | MR

[14] Gervais J.-L., Phys. Lett. B, 160 (1985), 279 | DOI | MR

[15] Volkov A. Yu., TMF, 74:1 (1988), 135–139 | MR

[16] Volkov A. Yu., Preprint TPT, Helsinki, 1992

[17] Bazhanov V. V., Stroganov Yu. G., J. Stat. Phys., 51 (1990), 799 | DOI | MR

[18] Volkov A. Yu., Dis. kand. fiz.-matem. nauk, LOMI, L., 1987

[19] Fateev V., Zamolodchikov A. B., Phys. Lett. A, 92 (1982), 37 | DOI | MR