“Classical” equations of motion in quantum mechanics with gauge fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 41-61
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Schrödinger and Dirac equations in an external gauge field with symmetry group $SU(2)$, we construct to any degree of accuracy in powers of $h^{1/2}$, $h\to0$, approximate dynamical states in the form of wave packets – semiclassical trajectory-coherent states. For the quantum expectation values calculated with respect to these semiclassical states we obtain for the operators of the coordinates, momenta, and isospin of the particle Hamiltonian equations of motion that are equivalent (in the relativistic case after transition to the proper time) to Wong's well-known equations for a non-Abelian charge with isospin $1/2$.
@article{TMF_1992_92_1_a3,
     author = {V. V. Belov and M. F. Kondrat'eva},
     title = {{\textquotedblleft}Classical{\textquotedblright} equations of motion in quantum mechanics with gauge fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--61},
     year = {1992},
     volume = {92},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a3/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - M. F. Kondrat'eva
TI  - “Classical” equations of motion in quantum mechanics with gauge fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 41
EP  - 61
VL  - 92
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a3/
LA  - ru
ID  - TMF_1992_92_1_a3
ER  - 
%0 Journal Article
%A V. V. Belov
%A M. F. Kondrat'eva
%T “Classical” equations of motion in quantum mechanics with gauge fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 41-61
%V 92
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a3/
%G ru
%F TMF_1992_92_1_a3
V. V. Belov; M. F. Kondrat'eva. “Classical” equations of motion in quantum mechanics with gauge fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 41-61. http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a3/

[1] Wong S. K., Nuovo Cim. A, 65:4 (1970), 689–694 | DOI

[2] Heinz V., Phys. Lett. B, 144:3 (1984), 228–230 | DOI

[3] Arodz H., Phys. Lett. B, 116:4 (1982), 251–254 | DOI | MR

[4] Arodz H., Phys. Lett. B, 116:4 (1982), 255–258 | DOI

[5] Barducci A., Casalbuoni R., Lusanna L., Nucl. Phys. B, 124 (1977), 93–108 | DOI

[6] Alekseev A. I., Arbuzov B. A., TMF, 65:2 (1985), 202–211 | MR

[7] Bagrov V. G., Baburova O. S., Vshivtsev A. S., Frolov B. N., Dvizhenie tsvetnoi chastitsy so spinom v neabelevykh polyakh v prostranstve Rimana–Kartana, Preprint No 33, Tomskii nauchnyi tsentr SO AN SSSR, Tomsk, 1988

[8] Montgomery R., Lett. Math. Phys., 1984, 59–67 | DOI | MR | Zbl

[9] Berken Dzh. D., Drell S. D., Relyativistskaya kvantovaya teoriya, t. 1, Nauka, M., 1978 | MR

[10] Arodz H., Acta Phys. Polon. B, 13 (1982), 59–537 | MR

[11] Ehrenfest P., Z. Phys. B, 45 (1927), 455–457 | DOI | MR | Zbl

[12] Bagrov V. G., Belov V. V., Ternov I. M., TMF, 50:3 (1982), 390–396 | MR

[13] Bagrov V. G., Belov V. V., Ternov I. M., J. Math. Phys., 12 (1983), 2855–2859 | DOI | MR

[14] Bagrov V. G., Belov V. V., Izv. vuzov. Fizika, 4 (1982), 48–50

[15] Bagrov V. G., Belov V. V., Trifonov Yu. A., Vysshie priblizheniya dlya kvaziklassicheskikh traektorno-kogerentnykh sostoyanii operatorov Shredingera i Diraka v proizvolnom elektromagnitnom pole, preprint No 5, Tomskii nauchnyi tsentr SO AN SSSR, Tomsk, 1989

[16] Belov V. V., Maslov V. P., DAN SSSR, 305:3 (1989), 574–580 ; 311:4 (1990), 849–854 | MR | MR

[17] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[18] Maslov V. P., Kompleksnyi metod VKB dlya nelineinykh uravnenii, Nauka, M., 1977 | MR

[19] Bargmann V., Wigner B., Proc. Nat. Acad. Sci. USA, 34:25 (1948), 211–223 | DOI | MR | Zbl

[20] Belov V. V., Bagrov V. G., Trifonov A. Yu., Yevseyevich A. A., Class. Quan. Grav., 8 (1991), 1349–1359 | DOI | MR

[21] Belov V. V., Bagrov V. G., Trifonov A. Yu., Yevseyevich A. A., Class. Quan. Grav., 8 (1991), 515–527 | DOI | MR

[22] Belov V. V., Bagrov V. G., Trifonov A. Yu., Yevseyevich A. A., Class. Quan. Grav., 8 (1991), 1833–1846 | DOI | MR

[23] Bagrov V. G., Trifonov A. Yu., Yevseyevich A. A., Class. Quan. Grav., 1992, in print | MR | Zbl

[24] Khuang K., Kvarki, leptony i kalibrovochnye polya, Mir, M., 1985 | MR

[25] Dodonov V. V., Kurmyshev E. V., Manko V. I., Tr. FIAN, 176, 128–150 | MR

[26] Zhukovskii V. Ch., ZhETF, 90:4 (1986), 1137–1140 | MR

[27] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[28] Zhukovskii V. Ch., Vshivtsev A. S., Agaev I. S., YaF, 36:4 (1982), 1023–1029 ; Жуковский В. Ч., Белоусов Ю. Н., Изв. вузов. Физика, 1989, No 2, 40–44 | MR