Stokes line width
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 24-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of Stokes line width is introduced for the asymptotic expansions of functions near an essential singularity. Explicit expressions are found for functions (switching functions) that “switch on” the exponentially small terms for the Dawson integral, Airy function, and the gamma function. A different, more natural representation of a function, not associated with expansion in an asymptotic series, in the form of dominant and recessive terms is obtained by a special division of the contour integral which represents the function into contributions of higher and lower saddle points. This division leads to a narrower, natural Stokes line width and a switching function of an argument that depends on the topology of the lines of steepest descent from the saddle point.
@article{TMF_1992_92_1_a2,
     author = {A. I. Nikishov and V. I. Ritus},
     title = {Stokes line width},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {24--40},
     year = {1992},
     volume = {92},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a2/}
}
TY  - JOUR
AU  - A. I. Nikishov
AU  - V. I. Ritus
TI  - Stokes line width
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 24
EP  - 40
VL  - 92
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a2/
LA  - ru
ID  - TMF_1992_92_1_a2
ER  - 
%0 Journal Article
%A A. I. Nikishov
%A V. I. Ritus
%T Stokes line width
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 24-40
%V 92
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a2/
%G ru
%F TMF_1992_92_1_a2
A. I. Nikishov; V. I. Ritus. Stokes line width. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 24-40. http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a2/

[1] Stokes G. G., Trans. Camb. Phil. Soc., 1864, no. 10, 106–128; Math. and Phys. Papers, 4 (1904), 77–109 | MR

[2] Bleinstein N., Handelsman R. A., Asymptotic Expansions of Integrals, Dover Publ., N. Y., 1986 | MR

[3] Dingle R. B., Asymptotic Expansions: Their Derivation and Interpretation, Acad. Press, N. Y., 1973 | MR | Zbl

[4] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1965 | MR

[6] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, GIFML, M., 1963

[7] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[8] Fok V. A., Difraktsiya radiovoln vokrug zemnoi poverkhnosti, AN SSSR, M.–L., 1946

[9] Miller W., Gordon A. R., J. Phys. Chem., 35 (1931), 2785–2884 | DOI

[10] Fok V. A., Predislovie k knige Faddeevoi V. N., Terenteva N. M., Tablitsy znachenii integrala veroyatnostei ot kompleksnogo argumenta, Gostekhizdat, M., 1954

[11] Fedoryuk M. V., Asimptotika, integraly i ryady, Nauka, M., 1987 | MR

[12] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1989 | MR

[13] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsiya, Mir, M., 1980 | MR

[14] Nikishov A. I., Ritus V. I., Asymptotic representations for some functions and integrals connected with the Airy function, preprint No 253, Lebedev Phys. Inst., M., 1985 | MR

[15] Berry M. V., Proc. Roy. Soc. Lond. A, 422:1862 (1989), 7 | DOI | MR | Zbl

[16] Berry M. V., Proc. Roy. Soc. Lond. A, 427:1873 (1990), 265 | DOI | MR | Zbl

[17] Berry M. V., Proc. Roy. Soc. Lond. A, 434:1891 (1991), 465 | DOI | MR | Zbl