Quantum projective field theory: Quantum-field analogs of the Euler formulas
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 172-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum-field analogs of Euler's formulas for rotation of a rigid body around a fixed axis in projective ($\operatorname{sl}(2,\mathbb{C})$-invariant) field theory on the Riemann sphere are presented. A class of quasistationary angular fields, the analogs of the angular velocity, is introduced. A sufficient condition for quasistationarity is obtained.
@article{TMF_1992_92_1_a17,
     author = {D. V. Yur'ev},
     title = {Quantum projective field theory: {Quantum-field} analogs of the {Euler} formulas},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {172--176},
     year = {1992},
     volume = {92},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a17/}
}
TY  - JOUR
AU  - D. V. Yur'ev
TI  - Quantum projective field theory: Quantum-field analogs of the Euler formulas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 172
EP  - 176
VL  - 92
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a17/
LA  - ru
ID  - TMF_1992_92_1_a17
ER  - 
%0 Journal Article
%A D. V. Yur'ev
%T Quantum projective field theory: Quantum-field analogs of the Euler formulas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 172-176
%V 92
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a17/
%G ru
%F TMF_1992_92_1_a17
D. V. Yur'ev. Quantum projective field theory: Quantum-field analogs of the Euler formulas. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 172-176. http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a17/

[1] Mac Nicol G., Comp. Graph. W., 1990, no. 11, 102–108

[2] Juriev D., Visual Comp., 8:2 (1992) | MR | Zbl

[3] Polyakov A. M., ZhETF, 66 (1974), 23 ; Юрьев Д. В., Алгебра и анализ, 2:2 (1990), 209–226 ; 3:3 (1991), 197–205 ; УМН, 46:4 (1991), 115–138 | MR | MR | Zbl | MR | MR

[4] Yurev D. V., TMF, 86:3 (1991), 338–343 | MR | Zbl

[5] Manin Yu. I., Dokazuemoe i nedokazuemoe, Sov. Radio, M., 1978 | Zbl

[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[7] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., Nucl. Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl

[8] Yarbus A. P., Rol dvizheniya glaz v protsesse zreniya, Nauka, M., 1965

[9] Kholevo A. S., “Kvantovoe stokhasticheskoe ischislenie”, Itogi nauki i tekhn. Sovr. probl. matem. Noveishie dostizheniya, 36, VINITI, M., 1989, 3–28 | MR | Zbl

[10] Belavkin V. P., “Khaoticheskie sostoyaniya i stokhasticheskoe integrirovanie v kvantovykh sistemakh”, UMN, 47:1 (1992), 47–106 | MR | Zbl