Thermorelaxation resonance in the quantum theory of Brownian motion
Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 119-126
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Brownian motion of a quantum particle in a thermal reservoir possessing a finite correlation time $\tau_c$ is considered. Non-Markov Langevin equations for a stationary nonequilibrium state are obtained. At low temperatures $T$ of the thermal reservoir, the correlation time $\tau_c=\hbar/2\pi T$ is fairly long. It is shown that allowance for the damping $\gamma$ of the particle momentum over the correlation times $\tau_c$: $\gamma\tau_c\simeq1$, leads to an oscillating temperature dependence of the relaxation coefficient $\gamma(1/T)$ in the region of low temperatures of the thermal reservoir.
@article{TMF_1992_92_1_a10,
     author = {A. B. Kuznetsov and A. Yu. Smirnov},
     title = {Thermorelaxation resonance in the quantum theory of {Brownian} motion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {119--126},
     year = {1992},
     volume = {92},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a10/}
}
TY  - JOUR
AU  - A. B. Kuznetsov
AU  - A. Yu. Smirnov
TI  - Thermorelaxation resonance in the quantum theory of Brownian motion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 119
EP  - 126
VL  - 92
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a10/
LA  - ru
ID  - TMF_1992_92_1_a10
ER  - 
%0 Journal Article
%A A. B. Kuznetsov
%A A. Yu. Smirnov
%T Thermorelaxation resonance in the quantum theory of Brownian motion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 119-126
%V 92
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a10/
%G ru
%F TMF_1992_92_1_a10
A. B. Kuznetsov; A. Yu. Smirnov. Thermorelaxation resonance in the quantum theory of Brownian motion. Teoretičeskaâ i matematičeskaâ fizika, Tome 92 (1992) no. 1, pp. 119-126. http://geodesic.mathdoc.fr/item/TMF_1992_92_1_a10/

[1] Bogolyubov N. N., Bogolyubov N. N.(ml.), EChAYa, 11:2 (1980), 245 | MR

[2] Mori H., Progr. Theor. Phys., 33 (1965), 423 | DOI | MR | Zbl

[3] Tokuyama M., Mori H., Progr. Theor. Phys., 55 (1976), 411 | DOI | MR | Zbl

[4] Vinogradov An. V., Tr. FIAN, 187 (1988), 117

[5] Fain B., Phys. Rev. A, 37:2 (1988), 546 | DOI | MR

[6] Petrov E. G., Teslenko V. I., TMF, 84:3 (1990), 446–458

[7] Efremov G. F., Smirnov A. Yu., ZhETF, 80:3 (1981), 1071

[8] Bogolyubov N. N., Bogolyubov N. N.(ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR

[9] Efremov G. F., Kazakov V. A., Izv. vuzov. Radiofizika, 22 (1979), 453, 1236

[10] Haake F., Reibold R., Phys. Rev. A, 32:4 (1985), 2462 | DOI | MR

[11] White J. A., Velasco S., Phys. Rev. A, 40:6 (1989), 3156 | DOI

[12] Kuznetsov A. B., Smirnov A. Yu., Optika i spektroskopiya, 68:5 (1990), 979