Nonlocal matrix hamiltonian operators, differential geometry, and applications
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 452-462
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of a class of nonlocal Hamiltonian operators that arise naturally as second Hamittonian structures of the nonlinear Schrödinger equation, the Heisenberg magnet, the Landau–Lifshitz equation, etc. A complete description of these operators is obtained, and it reveals intimate connections with classical differential geometry. A new nonlocal Hamiltonian structure of first order is constructed for the partly anisotropic ($J_1=J_2$) Landau–Lifshitz equation (hitherto, only Hamiltonian structures of zeroth and second orders were known for the Landau–Lifshitz equation).
			
            
            
            
          
        
      @article{TMF_1992_91_3_a9,
     author = {E. V. Ferapontov},
     title = {Nonlocal matrix hamiltonian operators, differential geometry, and applications},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {452--462},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a9/}
}
                      
                      
                    TY - JOUR AU - E. V. Ferapontov TI - Nonlocal matrix hamiltonian operators, differential geometry, and applications JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 452 EP - 462 VL - 91 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a9/ LA - ru ID - TMF_1992_91_3_a9 ER -
E. V. Ferapontov. Nonlocal matrix hamiltonian operators, differential geometry, and applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 452-462. http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a9/
