Quantization of classical lagrangian mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 433-439 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equations of motion of a massive rigid body in the Lagrange–Poisson case (when one point of the body is fixed) are expressed in Hamiltonian form, making it possible to describe the Lagrangian rigid body in terms of classical mechanics. Using Berezin's quantization algorithm, it is possible to associate the Lagrangian classical mechanics with a quantum system, namely, a system of two-level particles interacting with a resonant field.
@article{TMF_1992_91_3_a7,
     author = {E. I. Bogdanov},
     title = {Quantization of classical lagrangian mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--439},
     year = {1992},
     volume = {91},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a7/}
}
TY  - JOUR
AU  - E. I. Bogdanov
TI  - Quantization of classical lagrangian mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 433
EP  - 439
VL  - 91
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a7/
LA  - ru
ID  - TMF_1992_91_3_a7
ER  - 
%0 Journal Article
%A E. I. Bogdanov
%T Quantization of classical lagrangian mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 433-439
%V 91
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a7/
%G ru
%F TMF_1992_91_3_a7
E. I. Bogdanov. Quantization of classical lagrangian mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 433-439. http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a7/

[1] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, GITTL, M., 1973 | MR

[2] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[3] Olver D., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[4] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[5] Kirillov A. A., “Geometricheskoe kvantovanie”, Sovremennye problemy matematiki. Itogi nauki i tekhn., 4, VINITI, M., 1985, 141–178 | MR

[6] Bogdanov E. I., TMF, 72:2 (1987), 244–254

[7] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR