Supersymmetric structure of Kadomtsev–Petviashvili equation: Connection between supersymmetry and Bäcklund transformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 426-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Factorization of the Sato integrodifferential operator that gives the hierarchy of the Kadomtsev–Petviashvili equation is considered. The supersymmetric structure of this hierarchy is investigated by means of the factorization. A connection between the Miura transformations, Bäcklund transformations, and supersymmetry is established.
@article{TMF_1992_91_3_a6,
     author = {V. A. Andreev and S. M. Kharchev and M. V. Shmakova},
     title = {Supersymmetric structure of {Kadomtsev{\textendash}Petviashvili} equation: {Connection} between supersymmetry and {B\"acklund} transformations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {426--432},
     year = {1992},
     volume = {91},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a6/}
}
TY  - JOUR
AU  - V. A. Andreev
AU  - S. M. Kharchev
AU  - M. V. Shmakova
TI  - Supersymmetric structure of Kadomtsev–Petviashvili equation: Connection between supersymmetry and Bäcklund transformations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 426
EP  - 432
VL  - 91
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a6/
LA  - ru
ID  - TMF_1992_91_3_a6
ER  - 
%0 Journal Article
%A V. A. Andreev
%A S. M. Kharchev
%A M. V. Shmakova
%T Supersymmetric structure of Kadomtsev–Petviashvili equation: Connection between supersymmetry and Bäcklund transformations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 426-432
%V 91
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a6/
%G ru
%F TMF_1992_91_3_a6
V. A. Andreev; S. M. Kharchev; M. V. Shmakova. Supersymmetric structure of Kadomtsev–Petviashvili equation: Connection between supersymmetry and Bäcklund transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 426-432. http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a6/

[1] Bagchi B., Lahiri A., Roy P. K., Phys. Rev. D, 39:4 (1989), 1186–1189 | DOI | MR

[2] Hruby J., J. Phys. A.: Math. Gen., 22:11 (1989), 1807–1818 | DOI | MR | Zbl

[3] Andreev V. A., Burova M. V., TMF, 85:3 (1990), 376–387 | MR | Zbl

[4] Kupershmidt B. A., J. Phys. A.: Math. Gen., 22:11 (1989), L993–L998 | DOI | MR | Zbl

[5] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[6] Ablovitz M. J., Cornille H., Phys. Lett. A, 72:2 (1979), 277–280 | DOI | MR

[7] Arkadev V. A., Pogrebkov A. K., Polivanov M. K., Zap. nauchn. sem. LOMI, 133, 1984, 17–37 | MR | Zbl

[8] Flashka H., McLaughlin D. W., Lecture Notes in Math., 515, 1974, 251–295

[9] Witten E., Nucl. Phys. B, 185:2 (1981), 513–541 | DOI | MR

[10] Konopelchenco B., J. Phys. A.: Math. Gen., 23:12 (1990), L609–L612 | DOI