Two mathematical problems of canonical quantization. III. Stochastic vacuum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 377-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of recovery of the measure from its logarithmic derivative is investigated. The role of this problem in stochastic mechanics, canonical quantization, and the theory of integration of functionals is discussed. It is shown that a measure that possesses logarithmic derivative $A$ is a stationary distribution of a diffusion process with drift coefficient $A$. This makes it possible to calculate integrals with respect to the measure by means of Monte Carlo methods.
@article{TMF_1992_91_3_a2,
     author = {A. I. Kirillov},
     title = {Two mathematical problems of canonical {quantization.~III.} {Stochastic} vacuum mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--395},
     year = {1992},
     volume = {91},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a2/}
}
TY  - JOUR
AU  - A. I. Kirillov
TI  - Two mathematical problems of canonical quantization. III. Stochastic vacuum mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 377
EP  - 395
VL  - 91
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a2/
LA  - ru
ID  - TMF_1992_91_3_a2
ER  - 
%0 Journal Article
%A A. I. Kirillov
%T Two mathematical problems of canonical quantization. III. Stochastic vacuum mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 377-395
%V 91
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a2/
%G ru
%F TMF_1992_91_3_a2
A. I. Kirillov. Two mathematical problems of canonical quantization. III. Stochastic vacuum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 3, pp. 377-395. http://geodesic.mathdoc.fr/item/TMF_1992_91_3_a2/

[1] Kirillov A. I., TMF, 87:1 (1991), 22–33 | MR | Zbl

[2] Kirillov A. I., TMF, 87:2 (1991), 163–172 | MR | Zbl

[3] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii, vyp. 4, Fizmatgiz, M., 1961 | MR

[4] Averbukh V. I., Smolyanov O. G., Fomin S. V., Tr. Mosk. matem. ob-va, 24 (1971), 133–174 | MR | Zbl

[5] Gelfand I. M., Yaglom A. M., UMN, 11:1 (1956), 77–114 | MR | Zbl

[6] Kim S. K., Namgung W., Soh K. S., Yee J.H., Phys. Rev. D, 41:4 (1990), 1209–1215 | DOI

[7] Semmler U., J. Math. Phys., 30:7 (1989), 1597–1605 | DOI | MR | Zbl

[8] Friedrichs K. O., Shapiro H., Integration of functionals, Courant Inst., N. Y. Univ., N. Y., 1957 | MR

[9] Nelson E., Phys. Rev., 150:4 (1966), 1079–1085 | DOI

[10] Sansone Dzh., Obyknovennye differentsialnye uravneniya, t. I, IL, M., 1953 | MR

[11] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963 | MR

[12] Fukushima M., Phys. Rep., 77:3 (1981), 255–262 | DOI | MR

[13] Blanchard Ph., Combe Ph., Zheng W., Mathematical and Physical Aspects of Stochastic Mechanics, Springer, N. Y., 1987 | MR | Zbl

[14] Carlen E., Proc. IX Int. Congress on Math. Phys., eds. B. Simon, A. Truman, I. M. Davies, Adam Hilger, N. Y., 1989 | MR

[15] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR

[16] Shigekawa I., Osaka J. Math., 24:1 (1987), 37–59 | MR | Zbl

[17] Vakhaniya N. H.. Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[18] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR

[19] Hida T., Streit L., Nagoya Math. J., 68:12 (1977), 21–34 | DOI | MR | Zbl

[20] Vakhaniya N. N., Tarieladze V. I., Teoriya veroyatn. i ee primen., 23:1 (1978), 3–26 | MR

[21] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. I, Mir, M., 1977 | MR

[22] Umemura Y., Pub. Res. Inst. Math. Kyoto Univ. Al., 1:1 (1965), 49–54 | DOI | MR

[23] V. N. Sushko(red.), Konstruktivnaya teoriya polya, Sb. statei, Mir, M., 1977 | MR

[24] Berezanskii Yu. M., Kondratev Yu. G., Spektralnye metody v beskonechnomernom analize, Naukova dumka, Kiev, 1988 | MR | Zbl

[25] Röckner M., J. Funct. Anal., 79:2 (1988), 211–249 | DOI | MR | Zbl

[26] Bogachev V. I., Smolyanov O. G., UMN, 45:3(273) (1990), 3–83 | MR | Zbl

[27] Chatterji S. D., Probability in Banach spaces. II (Oberwolfach, 1978), Lecture Notes in Math., 709, Springer, Berlin, 1979, 75–86 | DOI | MR

[28] Kusuoka S., J. Fac. Sci. Univ. Tokyo. Sect. IA, 29:1 (1982), 79–95 | MR | Zbl

[29] Albeverio S., Hoegh-Krohn R., Z. Wahrsch. Verw. Geb., 40:1 (1977), 1–57 | DOI | MR | Zbl

[30] Albeverio S., Röckner M., Prob. Th. Rel. Fields, 89:3 (1991), 347–386 | DOI | MR | Zbl

[31] Daletskii Yu. L., Belopolskaya Ya. I., Stokhasticheskie uravneniya i differentsialnaya geometriya, Vyscha shk., Kiev, 1989 | MR