Connection of fields quantized in overlapping regions and the Unruh effect
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 2, pp. 217-233
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the example of a field quantized for positive values of the spatial coordinate (when particle creation certainly cannot occur) it is shown that incorrect use of the formula for the creation and annihilation operators leads to a transformation from the creation and armihilation operators to those in Minkowski space that corresponds to particle creation. It is shown that the connection of fields quantized in the Minkowski and Pdndler spaces has an analogous nature, i.e., a creation effect cannot be observed in the Rindler space. The correspondence between subspaces of states of these fields is considered.
			
            
            
            
          
        
      @article{TMF_1992_91_2_a3,
     author = {P. K. Silaev and O. A. Khrustalev},
     title = {Connection of fields quantized in overlapping regions and the {Unruh} effect},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {217--233},
     publisher = {mathdoc},
     volume = {91},
     number = {2},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_2_a3/}
}
                      
                      
                    TY - JOUR AU - P. K. Silaev AU - O. A. Khrustalev TI - Connection of fields quantized in overlapping regions and the Unruh effect JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 217 EP - 233 VL - 91 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1992_91_2_a3/ LA - ru ID - TMF_1992_91_2_a3 ER -
P. K. Silaev; O. A. Khrustalev. Connection of fields quantized in overlapping regions and the Unruh effect. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 2, pp. 217-233. http://geodesic.mathdoc.fr/item/TMF_1992_91_2_a3/
