Quadratic algebras and dynamics in curved spaces. I. Oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 2, pp. 207-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dynamical symmetry of a three-dimensional oscillator in a space of constant curvature is described by three operators formed from the components of the Fradkin–Higgs tensor and the generators of the quadratic Racah algebra $QR(3)$. This atgebra makes it possible to find all dynamical characteristics of the problem: the spectrum, degeneracy of the energy levels, and the overlap coefficients of the wave functions in different coordinate systems. The algebra that generates the spectrum is constructed and found to be the quadratic Jacobi algebra $QJ(3)$.
@article{TMF_1992_91_2_a2,
     author = {Ya. I. Granovskii and A. S. Zhedanov and I. M. Lutsenko},
     title = {Quadratic algebras and dynamics in curved {spaces.~I.} {Oscillator}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--216},
     year = {1992},
     volume = {91},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_2_a2/}
}
TY  - JOUR
AU  - Ya. I. Granovskii
AU  - A. S. Zhedanov
AU  - I. M. Lutsenko
TI  - Quadratic algebras and dynamics in curved spaces. I. Oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 207
EP  - 216
VL  - 91
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_2_a2/
LA  - ru
ID  - TMF_1992_91_2_a2
ER  - 
%0 Journal Article
%A Ya. I. Granovskii
%A A. S. Zhedanov
%A I. M. Lutsenko
%T Quadratic algebras and dynamics in curved spaces. I. Oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 207-216
%V 91
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_2_a2/
%G ru
%F TMF_1992_91_2_a2
Ya. I. Granovskii; A. S. Zhedanov; I. M. Lutsenko. Quadratic algebras and dynamics in curved spaces. I. Oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 2, pp. 207-216. http://geodesic.mathdoc.fr/item/TMF_1992_91_2_a2/

[1] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., ZhETF, 99:2 (1991), 353–361 | MR

[2] Granovskii Ya. I., Zhedanov A. S., Tochno reshaemye zadachi i ikh kvadratichnye algebry, preprint DonFTI-89-7, Donetsk, 1989

[3] Granovskii Ya. I., Zhedanov A. S., Lutzenko I.M., J. Phys. A, 24:16 (1991), 3887–3894 | DOI | MR

[4] Granovskii Ya. I., Zhedanov A. S., ZhETF, 94:10 (1988), 49–54 | MR

[5] Higgs P., J. Phys. A, 12:3 (1979), 309–329 | DOI | MR

[6] Sklyanin E. K., Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 ; 17:4 (1983), 34–48 | MR | Zbl | MR | Zbl

[7] Wilson J., SIAM J. Math. Anal., 11:4 (1980), 690–701 | DOI | MR | Zbl

[8] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR

[9] Quesne C., J. Phys. A, 21:14 (1988), 3093–3103 ; Gal'bert O. J., Granovskii Ya. I., Zhedanov A. S., Phys. Lett A, 153:4,5 (1991), 177–180 | DOI | MR | Zbl | DOI | MR