A class of exact solutions for a kinetic model of an equilibrium plasma
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 129-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stationary Vlasov–Maxwell system is reduced to a “resolving” equation of sinh-Gordon type. It is shown that for fully ionized hydrogen and helium plasmas the resolving equation will have the form of the sinh-Gordon equation and Bullough–Dodd–Zhiber–Shabat equation (with elliptic operator), respectively. Hirota's method is used to obtain exact solutions for these equations. From these solutions, the characteristics of the system are recovered: the distribution functions and the self-consistent electromagnetic field.
@article{TMF_1992_91_1_a9,
     author = {Yu. A. Markov},
     title = {A~class of exact solutions for a~kinetic model of an equilibrium plasma},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {129--141},
     year = {1992},
     volume = {91},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a9/}
}
TY  - JOUR
AU  - Yu. A. Markov
TI  - A class of exact solutions for a kinetic model of an equilibrium plasma
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 129
EP  - 141
VL  - 91
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a9/
LA  - ru
ID  - TMF_1992_91_1_a9
ER  - 
%0 Journal Article
%A Yu. A. Markov
%T A class of exact solutions for a kinetic model of an equilibrium plasma
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 129-141
%V 91
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a9/
%G ru
%F TMF_1992_91_1_a9
Yu. A. Markov. A class of exact solutions for a kinetic model of an equilibrium plasma. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 129-141. http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a9/

[1] Movsesyants Yu. B., ZhETF, 91 (1986), 493–499

[2] Samokhin A. V., DAN SSSR, 285 (1985), 1101–1106 | MR

[3] Rudykh G. A., Sidorov N. A., Sinitsyn A. V., DAN SSSR, 302:3 (1988), 594–597 | MR

[4] Markov Yu. A., Rudykh G. A., Sidorov N. A., Sinitsyn A. V., Matem. mod., 1:6 (1989), 95–107 | MR | Zbl

[5] Dodd R. K., Bullough R. K., Proc. Roy. Soc. London A, 352 (1977), 481 | DOI | MR

[6] Zhiber A. V., Shabat A. B., DAN SSSR, 247:5 (1979), 1103–1107 | MR

[7] Bulaf R. K., Kodri P. Pzh., Solitony, Mir, M., 1983 | MR

[8] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[9] Devidson R., Teoriya zaryazhennoi plazmy, Mir, M., 1978

[10] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov, Nauka, M., 1980 | MR

[11] Markov Yu. A., DAN SSSR, 308:1 (1989), 80–83 | MR

[12] Lem Dzh. L., Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR

[13] Borisov A. B., Kiselyev V. V., Physica D, 31 (1988), 49–64 | DOI | MR | Zbl

[14] Finn J. M., Kaw P. K., Phys. Fluids, 20:1 (1977), 72–78 | DOI | MR

[15] Fadeev V. M., Kvartskhava I. F., Komarov N. N., Yadernyi sintez, 5 (1965), 202–209

[16] Hirota R., J. Phys. Soc. Japan, 33:5 (1972), 1459–1463 | DOI | MR

[17] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[18] Borisov A. B., Taluts G. G., Tankeev A. P., Bezmaternykh G. V., “Vikhri i solitony dvukhmernogo sinus-Gordon uravneniya”, Sovremennye problemy teorii magnetizma, Naukova dumka, Kiev, 1986, 103–111

[19] Lifshits E. M., Pitaevskii L. P., Teoreticheskaya fizika, t. 10. Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[20] Kaptsov O. V., DAN SSSR, 298:3 (1988), 597–600 | MR | Zbl

[21] Mikhailov A. V., Pisma v ZhETF, 30:7 (1979), 443–448

[22] Ting A. C., Chen H. H., Lee Y. C., Physica D, 26 (1987), 37–66 | DOI | MR | Zbl

[23] Babich M. V., Algebra i analiz, 2:3 (1990), 63–77 | MR

[24] Cherdantsev I. Yu., Sharipov R. D., TMF, 82:1 (1990), 155–160 | MR