Solutions of Bogolyubov equations for one-dimensional system of hard spheres
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 120-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a one-dimensional system of particles that interact as hard elastic spheres the existence of global solutions to the Cauehy problem for the Bogolyubov equations is proved for initial data in spaces of sequences of summable and bounded functions.
@article{TMF_1992_91_1_a8,
     author = {V. I. Gerasimenko},
     title = {Solutions of {Bogolyubov} equations for one-dimensional system of hard spheres},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {120--128},
     year = {1992},
     volume = {91},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a8/}
}
TY  - JOUR
AU  - V. I. Gerasimenko
TI  - Solutions of Bogolyubov equations for one-dimensional system of hard spheres
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 120
EP  - 128
VL  - 91
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a8/
LA  - ru
ID  - TMF_1992_91_1_a8
ER  - 
%0 Journal Article
%A V. I. Gerasimenko
%T Solutions of Bogolyubov equations for one-dimensional system of hard spheres
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 120-128
%V 91
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a8/
%G ru
%F TMF_1992_91_1_a8
V. I. Gerasimenko. Solutions of Bogolyubov equations for one-dimensional system of hard spheres. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 120-128. http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a8/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[2] Petrina D. Ya., Gerasimenko V. I., UMN, 45:3 (1990), 135–182 | MR | Zbl

[3] Uchiyama K., Hiroshima Mat. J., 18:2 (1988), 245–297 | MR | Zbl

[4] Dobrushin R. L., Sinai Ya. G., Sukhov Yu. M., Sovr. probl. mat. Fund. napr., 2, VINITI, M., 1985, 233–284 | MR

[5] Hurd A. E., Arch. Rat. Mech. and Analysis, 98 (1987), 191–209 | DOI | MR | Zbl

[6] Aizenmann M., Goldstein S., Lebowitz J. L., Commun. Math, Phys., 39:4 (1975), 289–301 | DOI | MR

[7] Sinai Ya. G., Funkts. analiz i ego prilozh., 6:1 (1972), 41–50 | MR | Zbl

[8] Aizenmann M., Lebowitz J. L., Marro J., J. Stat. Phys., 18 (1978), 179–190 | DOI | MR

[9] Dobrushin P. L., Sukhov Yu. M., Sovr. probl. mat., 14, VINITI, M., 1979, 148–254 | MR | Zbl

[10] Boldrighini J., Dobrushin R. L., Suhov Yu. M., Stat. Phys., 31:3 (1983), 577–615 | DOI | MR

[11] Spohn H., Ann. Phys., 141:2 (1982), 353–385 | DOI | MR

[12] Holley R., Z. Wahrsch. Verw. Geb., 17:3 (1971), 181–219 | DOI | MR

[13] Dürr D., Goldstein S., Lebowitz J. L., Comrnun. Math. Phys., 78 (1981), 507–530 | DOI | MR | Zbl

[14] Grad H., Handbuch der Physik, 12 (1958), 205–294 | DOI | MR

[15] Gerasimenko V. I., Petrina D. Ya., TMF, 83:1 (1990), 92–114 | MR

[16] Galperin G. A., UMN, 33:1 (1978), 199 | MR

[17] Illner R., Finiteness of the number of collisions in haid sphere particle system in all space. Arbitrary diameters and masses, preprint Univ. Victoria, Canada, 1990 | MR | Zbl

[18] Gerasimenko V. I., DAN USSR, 1982, no. 5, 10–13 | MR | Zbl