Bound states and resonances of $N$-particle discrete Schrödinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 51-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of bound states and resonances of the Hamiltonian of a system of $N$ different quantum lattice particles with nonvanishing $N$-particle short-range interaction is proved. The dependence of the bound states and the resonances on the coupling constant and the quasimomentum is studied.
@article{TMF_1992_91_1_a4,
     author = {S. N. Lakaev},
     title = {Bound states and resonances of $N$-particle discrete {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {51--65},
     year = {1992},
     volume = {91},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a4/}
}
TY  - JOUR
AU  - S. N. Lakaev
TI  - Bound states and resonances of $N$-particle discrete Schrödinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 51
EP  - 65
VL  - 91
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a4/
LA  - ru
ID  - TMF_1992_91_1_a4
ER  - 
%0 Journal Article
%A S. N. Lakaev
%T Bound states and resonances of $N$-particle discrete Schrödinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 51-65
%V 91
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a4/
%G ru
%F TMF_1992_91_1_a4
S. N. Lakaev. Bound states and resonances of $N$-particle discrete Schrödinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 51-65. http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a4/

[1] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 4, Mir, M., 1982 | MR

[2] Simon B., Ann. Phys., 97 (1976), 279–288 | DOI | MR | Zbl

[3] Klaus M., Ann. Phys., 108 (1977), 299–300 | DOI | MR

[4] Lakaev S. N., TMF, 44:3 (1980), 381–386 | MR | Zbl

[5] Rauch I., J. Funct. Anal., 35 (1980), 304–315 | DOI | MR | Zbl

[6] Trenogin V. S., Funktsionalnyi analiz, Mir, M., 1980 | MR

[7] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1985 | MR

[8] Lakaev S. N., “Nekotorye spektralnye svoistva obobschennoi modeli Fridrikhsa”, Tr. seminara imeni I. G. Petrovskogo, 11, MGU, M., 1986, 210–238 | MR