Charge dynamics on~$U(1)$ abundles
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 36-50
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The quantum dynamics of a particle on $(2d-2)$ universal $U(1)$ fiber bundles is considered. The analysis on these bundles generalizes, in particular, the description of a system consisting of a charge and a Dirac magnetic monopole. The spectral
properties of Hamiltonians of a charge in a connection field of monopole type are studied, and a representation in which they have a simple form is found. The complete set of states in the global spaces of the $U(1)$ bundles graded by the topological number $n$ is constructed. It is shown that in each sector of the state space corresponding to the number $n\ne0$ spatial parity is violated.
The violation is topological in nature, i.e., it does not depend on the choice of the connection in the considered fiber bundles.
			
            
            
            
          
        
      @article{TMF_1992_91_1_a3,
     author = {A. B. Ryzhov and A. G. Savinkov},
     title = {Charge dynamics on~$U(1)$ abundles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {36--50},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a3/}
}
                      
                      
                    A. B. Ryzhov; A. G. Savinkov. Charge dynamics on~$U(1)$ abundles. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 36-50. http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a3/
