Non-Abelian pseudopotentials and nonlocal conservation laws of some heat conduction equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 30-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For some nonlinear heat conduction equations non-Abelian pseudopotentials are found and used to obtain local and nonlocal conservation laws of the corresponding equations. The general class of equations that possess pseudopotentials of the considered form is determined.
@article{TMF_1992_91_1_a2,
     author = {A. A. Alekseev and N. A. Kudryashov},
     title = {Non-Abelian pseudopotentials and nonlocal conservation laws of some heat conduction equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {30--35},
     year = {1992},
     volume = {91},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a2/}
}
TY  - JOUR
AU  - A. A. Alekseev
AU  - N. A. Kudryashov
TI  - Non-Abelian pseudopotentials and nonlocal conservation laws of some heat conduction equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 30
EP  - 35
VL  - 91
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a2/
LA  - ru
ID  - TMF_1992_91_1_a2
ER  - 
%0 Journal Article
%A A. A. Alekseev
%A N. A. Kudryashov
%T Non-Abelian pseudopotentials and nonlocal conservation laws of some heat conduction equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 30-35
%V 91
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a2/
%G ru
%F TMF_1992_91_1_a2
A. A. Alekseev; N. A. Kudryashov. Non-Abelian pseudopotentials and nonlocal conservation laws of some heat conduction equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 30-35. http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a2/

[1] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[2] Withelmsson H., Phys. Rev. A, 36:2 (1987), 965–966 | DOI | MR

[3] Chern S. S., Tenenblat K., Stud. Appl. Math., 74:1 (1986), 55–83 | DOI | MR | Zbl

[4] Cavilcante J. A., Tenenblat K., J. Math. Phys., 29:4 (1988), 1044–1049 | DOI | MR

[5] Wyller J., Phys. Scr., 40:6 (1989), 717–720 | DOI | MR | Zbl

[6] Corones J., J. Math. Phys., 17:5, 756–759 | DOI | MR | Zbl

[7] Kaup D. J., Physica D, 1 (1980), 391–411 | DOI | MR | Zbl

[8] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[9] Abellanas L., Galindo A., J. Math. Phys., 24:3 (1983), 504–509 | DOI | MR | Zbl

[10] Sachdev P. L., Nair K. R. C., Tikekar V. G., Math. Phys., 27 (1986), 1506 | DOI | MR | Zbl

[11] Sachdev P. L., Nair K. R. C., Tikekar V. G., J. Math. Phys., 29:11 (1988), 2397–2404 | DOI | MR | Zbl

[12] Wang X. Y., Zhu Z. S., Lu Y. K., J. Phys. A, 23:3 (1990), 271–274 | DOI | MR | Zbl

[13] Satsuma J., Topics in soliton theory and exactly solvable nonlinear equation, World Scientific, Singapore, 1987 | MR

[14] Yong J., Northeast Math. J., 2:4 (1986), 415–430 | MR

[15] Galaktionov V. A., Posashkov S. A., Lyuboe bolshoe reshenie uravneniya nelineinoi teploprovodnosti s istochnikom stanovitsya monotonnym po vremeni, preprint No 109.27, IPM AN SSSR, M., 1989 | MR

[16] Manoranjan V. S., Ortega T., Sanz-Serna J. M., J. Math. Phys., 29:9 (1988), 1964–1968 | DOI | MR | Zbl

[17] Bona J. L., Souganidis P. E., Strauss W. A., Proc. Roy. Soc. Loud. A, 411:1841 (1987), 395–412 | DOI | MR | Zbl