@article{TMF_1992_91_1_a0,
author = {A. V. Voronin and S. S. Horuzhy},
title = {True {BRST} symmetry algebra and the theory of its representations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--16},
year = {1992},
volume = {91},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a0/}
}
A. V. Voronin; S. S. Horuzhy. True BRST symmetry algebra and the theory of its representations. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a0/
[1] Felder G., Nucl. Phys. B, 317 (1989), 215–236 | DOI | MR
[2] Bernard D., Felder G., Commun. Math. Phys., 127 (1990), 145–168 | DOI | MR | Zbl
[3] Nishljima K., Nucl. Phys. B, 238 (1984), 601–620 | DOI | MR
[4] Kac V. G., Adv. Math., 26 (1977), 8–96 | DOI | Zbl
[5] Patra M. K., Tripathy K. C., Lett. Math. Phys., 13 (1987), 287–298 ; 17 (1989), 1–10 | DOI | MR | Zbl | DOI | MR | Zbl
[6] Barducci A., Casalbuoni R., Dominici D., Gatto R., Phys. Lets. B, 187 (1987), 135–140 ; Aratyn H., Ingermanson R., Niemi A.J., Nucl. Phys. B, 307 (1988), 157–182 ; Hasiewicz Z., Kowalski-Glikman J., Lukierski J., van Holten J. W., Phys. Lett. B, 217 (1989), 95–97 | DOI | MR | DOI | MR | DOI | MR
[7] Henneaux M., “BRST symmetry in the classical and quantum theories of gauge systems”, Quantum mechanics of fundamental systems (Santiago, 1985), Ser. Cent. Estud. Cient. Santiago, Plenum, New York, 1988, 117–144 | MR
[8] Scheunert M., The theory of Lie superalgebras, Springer-Verlag, Berlin Heidelberg–New York, 1979 | MR | Zbl
[9] Horuzhy S. S., Voronin A. V., Commun. Math. Phys., 123 (1989), 677–685 | DOI | MR | Zbl
[10] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR