True BRST symmetry algebra and the theory of its representations
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simple treatment of BRST symmetry is proposed. From the physical point of view, it expresses a symmetry between ghosts and spurions; from the mathematical point of view, the symmetry operations are linear transformations in the superspaee $C_{1,1}$. From this it follows that the true BRST symmetry algebra is $l(1,1)$, the Lie superalgebra of all linear endomorphisms of $C_{1,1}$, which extends the usual BRST algebra of the generators $Q$ and $Q_c$ with two new generators $K=Q^*$ and $R=\{Q,Q^*\}$. The theory of the representations of $l(1,1)$ is developed systematically. The sets of automorphisms and involutions of $l(1,1)$ are described. Decompositions into irreducible and indecomposable components are constructed for large classes of representations, both finiteand infinite-dimensional. Particular attention is devoted to the analysis of the indecomposable representations (in particular, a connection between them and subspaces of the continuous spectrum of the generators is found) and also of the metric properties of the indefinite spaces of the representations. A class of physical representations is identified and described in detail.
@article{TMF_1992_91_1_a0,
     author = {A. V. Voronin and S. S. Horuzhy},
     title = {True {BRST} symmetry algebra and the theory of its representations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--16},
     year = {1992},
     volume = {91},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a0/}
}
TY  - JOUR
AU  - A. V. Voronin
AU  - S. S. Horuzhy
TI  - True BRST symmetry algebra and the theory of its representations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 3
EP  - 16
VL  - 91
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a0/
LA  - ru
ID  - TMF_1992_91_1_a0
ER  - 
%0 Journal Article
%A A. V. Voronin
%A S. S. Horuzhy
%T True BRST symmetry algebra and the theory of its representations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 3-16
%V 91
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a0/
%G ru
%F TMF_1992_91_1_a0
A. V. Voronin; S. S. Horuzhy. True BRST symmetry algebra and the theory of its representations. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a0/

[1] Felder G., Nucl. Phys. B, 317 (1989), 215–236 | DOI | MR

[2] Bernard D., Felder G., Commun. Math. Phys., 127 (1990), 145–168 | DOI | MR | Zbl

[3] Nishljima K., Nucl. Phys. B, 238 (1984), 601–620 | DOI | MR

[4] Kac V. G., Adv. Math., 26 (1977), 8–96 | DOI | Zbl

[5] Patra M. K., Tripathy K. C., Lett. Math. Phys., 13 (1987), 287–298 ; 17 (1989), 1–10 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Barducci A., Casalbuoni R., Dominici D., Gatto R., Phys. Lets. B, 187 (1987), 135–140 ; Aratyn H., Ingermanson R., Niemi A.J., Nucl. Phys. B, 307 (1988), 157–182 ; Hasiewicz Z., Kowalski-Glikman J., Lukierski J., van Holten J. W., Phys. Lett. B, 217 (1989), 95–97 | DOI | MR | DOI | MR | DOI | MR

[7] Henneaux M., “BRST symmetry in the classical and quantum theories of gauge systems”, Quantum mechanics of fundamental systems (Santiago, 1985), Ser. Cent. Estud. Cient. Santiago, Plenum, New York, 1988, 117–144 | MR

[8] Scheunert M., The theory of Lie superalgebras, Springer-Verlag, Berlin Heidelberg–New York, 1979 | MR | Zbl

[9] Horuzhy S. S., Voronin A. V., Commun. Math. Phys., 123 (1989), 677–685 | DOI | MR | Zbl

[10] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR