True BRST symmetry algebra and the theory of its representations
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 3-16
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A simple treatment of BRST symmetry is proposed. From the physical point of view, it expresses a symmetry between ghosts and spurions; from the mathematical point of view, the symmetry operations are linear transformations in the superspaee $C_{1,1}$. From this it follows that the true BRST symmetry algebra is $l(1,1)$, the Lie superalgebra of all linear endomorphisms of $C_{1,1}$, which extends the usual BRST algebra of the generators $Q$ and $Q_c$ with two new generators $K=Q^*$ and $R=\{Q,Q^*\}$. The theory
of the representations of $l(1,1)$ is developed systematically. The sets of automorphisms and involutions of $l(1,1)$ are described.
Decompositions into irreducible and indecomposable components are constructed for large classes of representations, both finiteand infinite-dimensional. Particular attention is devoted to the analysis of the indecomposable representations (in particular, a connection between them and subspaces of the continuous spectrum of the generators is found) and also of the metric properties of the indefinite spaces of the representations. A class of physical representations is identified and described in detail.
			
            
            
            
          
        
      @article{TMF_1992_91_1_a0,
     author = {A. V. Voronin and S. S. Horuzhy},
     title = {True {BRST} symmetry algebra and the theory of its representations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {91},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a0/}
}
                      
                      
                    TY - JOUR AU - A. V. Voronin AU - S. S. Horuzhy TI - True BRST symmetry algebra and the theory of its representations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 3 EP - 16 VL - 91 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a0/ LA - ru ID - TMF_1992_91_1_a0 ER -
A. V. Voronin; S. S. Horuzhy. True BRST symmetry algebra and the theory of its representations. Teoretičeskaâ i matematičeskaâ fizika, Tome 91 (1992) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TMF_1992_91_1_a0/
