Gibbs random fields invariant under infinite-particle Hamiltonian dinamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 424-459
Cet article a éte moissonné depuis la source Math-Net.Ru
The Liouville operator for an infinite-particle Hamiltoniaa dynamics corresponding to interaction potential $U$ is used to introduce the concept of a locally weakly invariant measure on the phase space and to show that if a Gibbs measure with potential of general form is locally weakly invariant then its Hamiltonian is asymptotically an additive integral of the motion of the particles with the interaction $U$.
@article{TMF_1992_90_3_a7,
author = {B. M. Gurevich},
title = {Gibbs random fields invariant under infinite-particle {Hamiltonian} dinamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {424--459},
year = {1992},
volume = {90},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a7/}
}
B. M. Gurevich. Gibbs random fields invariant under infinite-particle Hamiltonian dinamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 424-459. http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a7/
[1] Gurevich B. M., Oseledets V. I., Itogi nauki i tekhniki. Teor. veroyatn., mat. statist., teor. kiber., 14, VINITI, M., 1977, 5–39 | MR | Zbl
[2] Gurevich B. M., UMN, 41:2 (1986), 193–194 | MR
[3] Gurevich B. M., Trudy MMO, 52, 1989, 175–228 | MR | Zbl
[4] Gurevich B. M., UMN, 45:6 (1990), 131–132 | MR | Zbl
[5] Gurevich B. M., Sukhov Yu. M., DAN SSSR, 223:2 (1975), 276–279 | MR | Zbl
[6] Gurevich B. M., Suhov Ju. M., Commun. Math. Phys., 49:1 (1976), 63–96 | DOI | MR
[7] Feller V., Vvedenie v teoriyu veroyatnostei, t. I, Mir, M., 1964 | MR | Zbl