Quantum mechanics in Riemannian spacetime.~II. Operators of observables
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 412-423
Voir la notice de l'article provenant de la source Math-Net.Ru
The formulation of the generally eovariant analog of standard (nonrelativistic) quantum mechanics in a general Riemannian spacetime begun in earlier studies of the author is continued with the introduction of asymptotic (with respect to $c^{-2}$) operators of the spatial position of a spirdess particle and of the projection of its momentum onto an arbitrary spacetime direction. The connection between the position operator and the generalization of the $V_{1,3}$ Newton–Wigner operator is established. It is shown that the projection of the momentum onto the $4$-velocity of the frame of reference (the energy operator) is unitarily equivalent to the Hamiltonian in the Schrödinger equation.
@article{TMF_1992_90_3_a6,
author = {\'E. A. Tagirov},
title = {Quantum mechanics in {Riemannian} {spacetime.~II.} {Operators} of observables},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {412--423},
publisher = {mathdoc},
volume = {90},
number = {3},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a6/}
}
É. A. Tagirov. Quantum mechanics in Riemannian spacetime.~II. Operators of observables. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 412-423. http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a6/