Conservation laws for spinor fields on a Riemannian spacetime manifold
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 369-379 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The analog of the polar decomposition theorem in Euclidean space is obtained in Minkowski space. The possibility of considering spinors in arbitrary frames is established by extending a Lorentz-group representation to a representation of the complete linear group in the space of spinors. The Lie derivative of spinors along arbitrary vector fields is constructed, and a Noether theorem for spinor fields is proved.
@article{TMF_1992_90_3_a2,
     author = {R. F. Bilyalov},
     title = {Conservation laws for spinor fields on {a~Riemannian} spacetime manifold},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--379},
     year = {1992},
     volume = {90},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a2/}
}
TY  - JOUR
AU  - R. F. Bilyalov
TI  - Conservation laws for spinor fields on a Riemannian spacetime manifold
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 369
EP  - 379
VL  - 90
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a2/
LA  - ru
ID  - TMF_1992_90_3_a2
ER  - 
%0 Journal Article
%A R. F. Bilyalov
%T Conservation laws for spinor fields on a Riemannian spacetime manifold
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 369-379
%V 90
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a2/
%G ru
%F TMF_1992_90_3_a2
R. F. Bilyalov. Conservation laws for spinor fields on a Riemannian spacetime manifold. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 369-379. http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a2/

[1] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[2] Levitskii B. A., Yappa Yu. A., TMF, 48 (1981), 227–235 | MR | Zbl

[3] Kosman I., C. R. Acad. Sci. Paris A, 262 (1966), 289 | MR | Zbl

[4] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966 | MR

[5] Maltsev A. I., Osnovy lineinoi algebry, GITTL, M., 1956 | MR

[6] Coleman S., Wess J., Zumino B., Phys. Rev., 177:5 (1969), 2239–2247 | DOI

[7] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 1, Nauka, M., 1981 | MR

[8] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982 | MR

[9] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1967 | MR | Zbl