Conservation laws for spinor fields on a Riemannian spacetime manifold
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 369-379
Cet article a éte moissonné depuis la source Math-Net.Ru
The analog of the polar decomposition theorem in Euclidean space is obtained in Minkowski space. The possibility of considering spinors in arbitrary frames is established by extending a Lorentz-group representation to a representation of the complete linear group in the space of spinors. The Lie derivative of spinors along arbitrary vector fields is constructed, and a Noether theorem for spinor fields is proved.
@article{TMF_1992_90_3_a2,
author = {R. F. Bilyalov},
title = {Conservation laws for spinor fields on {a~Riemannian} spacetime manifold},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {369--379},
year = {1992},
volume = {90},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a2/}
}
R. F. Bilyalov. Conservation laws for spinor fields on a Riemannian spacetime manifold. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 3, pp. 369-379. http://geodesic.mathdoc.fr/item/TMF_1992_90_3_a2/
[1] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR
[2] Levitskii B. A., Yappa Yu. A., TMF, 48 (1981), 227–235 | MR | Zbl
[3] Kosman I., C. R. Acad. Sci. Paris A, 262 (1966), 289 | MR | Zbl
[4] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966 | MR
[5] Maltsev A. I., Osnovy lineinoi algebry, GITTL, M., 1956 | MR
[6] Coleman S., Wess J., Zumino B., Phys. Rev., 177:5 (1969), 2239–2247 | DOI
[7] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 1, Nauka, M., 1981 | MR
[8] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982 | MR
[9] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1967 | MR | Zbl