Calculation of quantum partition function of the BCS model in the disordered phase
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 233-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Functional integration is used to make an exact calculation of the quantum partition function of the reduced BCS model in the thermodynamic limit. The expression for the quantum partition function and the estimate of the temperature $T_c$ of the phase transition in the ordered phase agree with the well-known results [1]. In the disordered phase, a singularity with respect to the temperature appears in the quantum partition function, which diverges at temperatures below a certain critical temperature $T_c^*$. This satisfies $T_c^*>T_c$ and the difference $T_c^*-T_c$ is not small. An interpretation of the temperature $T_c^*$ is given.
@article{TMF_1992_90_2_a7,
     author = {A. F. Izmailov and A. R. Kessel},
     title = {Calculation of quantum partition function of the {BCS} model in the disordered phase},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--245},
     year = {1992},
     volume = {90},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a7/}
}
TY  - JOUR
AU  - A. F. Izmailov
AU  - A. R. Kessel
TI  - Calculation of quantum partition function of the BCS model in the disordered phase
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 233
EP  - 245
VL  - 90
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a7/
LA  - ru
ID  - TMF_1992_90_2_a7
ER  - 
%0 Journal Article
%A A. F. Izmailov
%A A. R. Kessel
%T Calculation of quantum partition function of the BCS model in the disordered phase
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 233-245
%V 90
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a7/
%G ru
%F TMF_1992_90_2_a7
A. F. Izmailov; A. R. Kessel. Calculation of quantum partition function of the BCS model in the disordered phase. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 233-245. http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a7/

[1] Bogolyubov N. N.(ml.), Metod issledovaniya modelnykh gamiltonianov, Hauka, M., 1974

[2] Izmailov A. F., Kessel A. R., “Tochnoe reshenie modeli BKSh”, Kratkie soobscheniya po fizike FIAN, 1989, no. 3, 22–24

[3] Izmailov A. F., Kessel A. R., “Exact solution of the BCS model above the phase transition point”, Abstracts of the 17-th IUPAP International Conference on Thermodynamic and Statistical Mechanics (Rio de Janeiro, 1989)

[4] Izmailov A. F., Kessel A. R., J. Mod. Phys. A, 4:18 (1989), 4991–5002 | DOI

[5] Popov V. N., Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 2, Zap. nauchn. semin. LOMI, 101, 1981, 128–150 | MR

[6] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[7] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[8] Trev F., Vvedenie v teoriyu psevdodifferentsialnykh operatorov i integralnykh operatorov Fure. T. 2. Integralnye operatory Fure, Mir, M., 1984 | MR | Zbl

[9] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl