The Landau--Lifshitz formula and the correspondence principle for semiclassical matrix elements
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 218-225
Voir la notice de l'article provenant de la source Math-Net.Ru
The semiclassical Landau–Lifshitz formula with pre-exponential factor is derived and its cormection with the correspondence principle is traced. Illustrations are given of its use for the Morse potential and the modified Peschl–Teller potential, and also for a very simple potential with first-order poles.
@article{TMF_1992_90_2_a5,
author = {\`E. S. Medvedev},
title = {The {Landau--Lifshitz} formula and the correspondence principle for semiclassical matrix elements},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {218--225},
publisher = {mathdoc},
volume = {90},
number = {2},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a5/}
}
TY - JOUR AU - È. S. Medvedev TI - The Landau--Lifshitz formula and the correspondence principle for semiclassical matrix elements JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 218 EP - 225 VL - 90 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a5/ LA - ru ID - TMF_1992_90_2_a5 ER -
È. S. Medvedev. The Landau--Lifshitz formula and the correspondence principle for semiclassical matrix elements. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 218-225. http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a5/