Expansion with respect to~$\hbar$ for bound states of the Schr\"odinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 208-217
Voir la notice de l'article provenant de la source Math-Net.Ru
A WKB-complementing $\hbar$ expansion for bound states of the radial Schrödinger equation is discussed. A recursive method for calculating the quantum corrections of any order to the energy of the classical motion is presented. The use of quantization conditions makes it possible to write down recursion relations in an equally simple form for the ground and radially excited states. The connection between the approach and the $1/N$ expansion is considered. It is shown that the method can also be used for analysis in the $(l,E)$ plane in the form of a $\hbar$ expansion for Regge trajectories.
@article{TMF_1992_90_2_a4,
author = {S. S. Stepanov and R. S. Tutik},
title = {Expansion with respect to~$\hbar$ for bound states of the {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {208--217},
publisher = {mathdoc},
volume = {90},
number = {2},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a4/}
}
TY - JOUR AU - S. S. Stepanov AU - R. S. Tutik TI - Expansion with respect to~$\hbar$ for bound states of the Schr\"odinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 208 EP - 217 VL - 90 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a4/ LA - ru ID - TMF_1992_90_2_a4 ER -
S. S. Stepanov; R. S. Tutik. Expansion with respect to~$\hbar$ for bound states of the Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 208-217. http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a4/