Fokker–Planck method in the theory of parametric resonance of spin waves
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 278-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of parametric spin waves interacting with a thermal reservoir is considered. A generalized Fokker–Planck equation for the distribution function $f(a,t)$, of the amplitudes of the parametric spin waves in a ferromagnet is constructed. An equation for the distribution function $F(n,\sigma,t)$ of pairs of parametric spin waves is obtained on the basis of this equation using the idea of a reduced description. Approximate stationary solutions of the equation for the distribution function $F(n,\sigma)$ are found in the pre-threshold and post-threshold states.
@article{TMF_1992_90_2_a11,
     author = {V. G. Morozov and A. N. Mukhai},
     title = {Fokker{\textendash}Planck method in the theory of parametric resonance of spin waves},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {278--300},
     year = {1992},
     volume = {90},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a11/}
}
TY  - JOUR
AU  - V. G. Morozov
AU  - A. N. Mukhai
TI  - Fokker–Planck method in the theory of parametric resonance of spin waves
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 278
EP  - 300
VL  - 90
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a11/
LA  - ru
ID  - TMF_1992_90_2_a11
ER  - 
%0 Journal Article
%A V. G. Morozov
%A A. N. Mukhai
%T Fokker–Planck method in the theory of parametric resonance of spin waves
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 278-300
%V 90
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a11/
%G ru
%F TMF_1992_90_2_a11
V. G. Morozov; A. N. Mukhai. Fokker–Planck method in the theory of parametric resonance of spin waves. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 278-300. http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a11/

[1] Morozov V. G., Sankovich D. P., “Kineticheskoe uravnenie dlya kvantovoi dinamicheskoi sistemy, vzaimodeistvuyuschei s termostatom”, Tr. II Mezhdunarodnogo simpoziuma po izbrannym problemam statisticheskoi mekhaniki, OIYaI, Dubna, 1981, 508–518

[2] Zubarev D. N., “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, VINITI, M., 1980, 131–226 | MR

[3] Morozov V. G., TMF, 48:3 (1981), 373–384 | MR

[4] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[5] Zubarev D. N., Morozov V. G., Physica A, 120:3 (1983), 411–467 | DOI | MR

[6] Morozov V. G., Mukhai A. N., TMF, 53:2 (1982), 305–317

[7] Zakharov V. E., Lvov V. S., Starobinets S. S., UFN, 114:4 (1974), 609–654 | DOI

[8] Raikher Yu. L., Shliomis M. I., ZhETF, 67:3 (1974), 1060–1064

[9] Gekht R. S., Ignatchenko V. A., Raikher Yu. L., Shliomis M. I., ZhETF, 70:1 (1976), 1300–1311

[10] Morozov V. G., Mukhai A. N., TMF, 51:2 (1982), 234–246

[11] Morozov V. G., Mukhai A. N., TMF, 75:1 (1988), 124–136

[12] Prozorova L. A., Smirnov A. I., ZhETF, 69:2 (1974), 758–763

[13] Lvov V. S., Cherepanov V. B., ZhETF, 76:6 (1979), 2266–2278

[14] Bakai A. S., ZhETF, 74:3 (1978), 993–1004

[15] Suhl H., Phys. Chem. Sol., 1 (1957), 209–227 | DOI

[16] Suhl H., Phys. Rev. Lett., 6 (1961), 174–176 | DOI

[17] Prozorova L. A., Borovik-Romanov A. S., Pisma v ZhETF, 10 (1970), 316–320

[18] Kotyuzhanskii B. Ya., Prozorova L. A., ZhETF, 62:6 (1972), 1199–1209

[19] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl