Spin glass with $S=1$
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 273-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A spin glass that differs from the Sherrington–Kirkpatrick model only in the spin's taking three values: $+1$, $0$, $-1$, is investigated. The free energy of the system is obtained in the replica-symmetric approximation, in which the equations for the order parameters are also solved; the entropy at zero temperature is negative. At zero temperature, all spins take values $+1$, $-1$. This makes it possible to calculate the number of metastable states by the method of Edwards and Tanaka. The number is equal to the well-known result for the Sherrington–Kirkpatrick model.
@article{TMF_1992_90_2_a10,
     author = {E. A. Luchinskaya and E. E. Tareeva},
     title = {Spin glass with~$S=1$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {273--277},
     year = {1992},
     volume = {90},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a10/}
}
TY  - JOUR
AU  - E. A. Luchinskaya
AU  - E. E. Tareeva
TI  - Spin glass with $S=1$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 273
EP  - 277
VL  - 90
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a10/
LA  - ru
ID  - TMF_1992_90_2_a10
ER  - 
%0 Journal Article
%A E. A. Luchinskaya
%A E. E. Tareeva
%T Spin glass with $S=1$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 273-277
%V 90
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a10/
%G ru
%F TMF_1992_90_2_a10
E. A. Luchinskaya; E. E. Tareeva. Spin glass with $S=1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 2, pp. 273-277. http://geodesic.mathdoc.fr/item/TMF_1992_90_2_a10/

[1] Loidl A., Knorr K., Feile R., Kyems J. K., Phys. Rev. Lett., 51:12 (1983), 1054–1057 | DOI

[2] Kanter I., Sompolinsky H., Phys. Rev. B, 33:3 (1986), 2073–2076 | DOI

[3] Sullivan N. S., Devoret M., Esteve D., Phys. Rev. B, 30:9 (1984), 4935–4945 | DOI

[4] Lutchinskaia E. A., Ryzhov V. N., Tareyeva E. E., J. Phys. C, 17:26 (1984), 665–667 | DOI

[5] Moskalenko V. A., Vladimir M. I., Kozhukar S. P., Metod samosoglasovannogo polya v teorii stekolnogo sostoyaniya spinovykh i kvadrupolnykh sistem, Shtiintsa, Kishinev, 1990 | MR

[6] Hochli U. T., Phys. Rev. Lett., 48:21 (1982), 1494–1497 | DOI

[7] Courtens E., Phys. Rev. Lett., 52:1 (1984), 69–72 | DOI

[8] Chatak S. K., Sherrington D., J. Phys. C, 10:16 (1977), 3149–3156 | DOI

[9] Mottishaw P. J., Sherrington D., J. Phys. C, 18:26 (1985), 5201–5213 | DOI

[10] Lage E. J. S., de Almeida J. R. L., J. Phys. C, 15:33 (1982), 1187–1193 | DOI

[11] Doussineau P., Levelut A., Schön W., Sol. State Commun., 70:1 (1989), 37–39 | DOI

[12] Luchinskaya E. A., Tareeva E. E., TMF, 70:3 (1987), 477–480

[13] Tanaka F., Edwards S. F., J. Phys. F, 10:12 (1980), 2769–2778 | DOI