Variational perturbation theory. $\varphi^{2k}$ oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 1, pp. 37-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Variational pertaarbation theory is used to study the anharmonic $\varphi^{2k}$ oscillator in the strong coupling limit. Nonpermrbative expressions are obtained for the vacuum energy, the Green's function, and the effective potential.
@article{TMF_1992_90_1_a3,
     author = {L. D. Korsun and A. N. Sisakyan and I. L. Solovtsov},
     title = {Variational perturbation theory. $\varphi^{2k}$ oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {37--54},
     year = {1992},
     volume = {90},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_90_1_a3/}
}
TY  - JOUR
AU  - L. D. Korsun
AU  - A. N. Sisakyan
AU  - I. L. Solovtsov
TI  - Variational perturbation theory. $\varphi^{2k}$ oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 37
EP  - 54
VL  - 90
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_90_1_a3/
LA  - ru
ID  - TMF_1992_90_1_a3
ER  - 
%0 Journal Article
%A L. D. Korsun
%A A. N. Sisakyan
%A I. L. Solovtsov
%T Variational perturbation theory. $\varphi^{2k}$ oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 37-54
%V 90
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1992_90_1_a3/
%G ru
%F TMF_1992_90_1_a3
L. D. Korsun; A. N. Sisakyan; I. L. Solovtsov. Variational perturbation theory. $\varphi^{2k}$ oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 90 (1992) no. 1, pp. 37-54. http://geodesic.mathdoc.fr/item/TMF_1992_90_1_a3/

[1] Kasakov D. I., Shirkov D. V., Fortschr. Phys., 28:8,9 (1980), 465–499 ; Zinn-Justin J., Phys. Repts., 70:1 (1981), 109–167 ; Попов В. С., Елецкий В. Л., Турбинер А. В., ЖЭТФ, 74 (1978), 445–456 | DOI | MR | DOI | MR | MR

[2] Lam C. S., Nuovo Gimento A, 47 (1966), 451–459 ; Langer J. S., Ann. Phys., 41 (1967), 108–157 ; Липатов Л. Н., ЖЭТФ, 72 (1977), 411–427 ; Brezin E., Le Guillou J. C., Zinn-Justin J., Phys. Rev. D, 15:6 (1977), 1544–1564 ; Brezin E., Parisi B., Zinn-Justin J., Phys. Rev. D, 16:2 (1977), 408–412 ; Collins J. S., Soper D. E., Ann. Phys., 112:1 (1978), 209–234 ; Auberson G., Mennessier G., Mahoux G., Nuovo Cimento A, 48 (1978), 1–23 | DOI | DOI | MR | DOI | MR | DOI | DOI | MR | DOI | MR

[3] Kazakov D. I., Tarasov O. V., Shirkov D. V., TMF, 38:1 (1979), 15–25 ; Parisi G., Phys. Lett. B, 69:3 (1977), 329–331 | MR | DOI | MR

[4] Glimm Dzh., Dzhaffe A., Matematicheskie metody kvantovoi fiziki, Mir, M., 1984 | MR | Zbl

[5] Efimov G. V., Commun. Math. Phys., 65 (1979), 15–44 ; Ефимов Г. В., Иванов М. А., Препринт Р2-81-707, ОИЯИ, Дубна, 1981 | DOI | MR | Zbl

[6] Cornwall J. M., Jackiw R., Tomboulis E., Phys. Rev. D, 10:8 (1974), 2428–2444 ; Bardeen N. A., Moshe M., Phys. Rev. D, 28 (1983), 1372–1385 | DOI | MR | DOI

[7] Barnes T., Ghandour G. I., Phys. Rev. D, 22:4 (1980), 924–938 ; Stevenson P. M., Phys. Rev. D, 30:8 (1984), 1712–1726 ; 32:6 (1985), 1389–1408 ; Consoli M., Ciancitto A., Nucl. Phys. B, 254 (1985), 653–677 | DOI | DOI | MR | DOI | DOI

[8] Ritschel U., Phys. Lett. B, 227:2 (1989), 251–254 ; Polley L., Ritschel U., Phys. Lett. B, 221:1 (1989), 44–48 ; Funke M., Kaulfuss U., Kummel H., Phys. Rev. D, 35:2 (1987), 621–630 | DOI | MR | DOI | MR | DOI

[9] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 4, Mir, M., 1982 | MR

[10] Halliday I. G., Suranyi P., Phys. Lett. B, 85 (1979), 421–423 ; Phys. Rev. D, 21:6 (1980), 1529–1537 ; Утверидзе А. Г., ЯФ, 38 (1983), 798–802; Phys. Lett. B, 142 (1984), 403–405 | DOI | DOI | MR | DOI | MR

[11] Hioe F. T., Montroll E. W., J. Math. Phys., 16:9 (1975), 1945–1955 ; Hioe F. T., Mac-Millen D., Montroll E. W., Phys. Reports. C, 43:7 (1978), 305–335 ; Ader J. P., Bonnier B., Hontebeyrie M., Nucl. Phys. B, 170 (1980), 165–174 | DOI | MR | DOI | MR | DOI

[12] Caswell W. E., Ann. Phys., 123 (1979), 153–184 | DOI