Effects of particle structure in the three-body problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 420-437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of an exactly solvable manifestly relativistically invariant model of three particles (hadrons, nuclei) that possess internal structure. The model takes into account not only a potential interaction but also a mechanism associated with the formation of compound systems (of the type of composite quark-gluon bags) in intermediate states. The scattering problem in the system is solved by a method based on introducing a dependence of the state vectors and scattering operators in the three-body space on an additional external parameter. By an analysis of the conditions of two- and three-particle unitarity it is shown that the effects of particle structure due to coupling of three-body (hadronic) and hadron-bag configurations leads to the appearance of certain factors in the cross sections for $2\to 2$ and $2\to 3$ processes. These factors can be expressed in terms of the mean values of the derivatives of the operators of the effective interactions in the three-body space with respect to the invariant masses of the two-body subsystems. Bounds on these factors that follow from the Hermiticity of the mass operator of the system are obtained.
@article{TMF_1991_89_3_a8,
     author = {A. N. Safronov},
     title = {Effects of particle structure in the three-body problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {420--437},
     year = {1991},
     volume = {89},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a8/}
}
TY  - JOUR
AU  - A. N. Safronov
TI  - Effects of particle structure in the three-body problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 420
EP  - 437
VL  - 89
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a8/
LA  - ru
ID  - TMF_1991_89_3_a8
ER  - 
%0 Journal Article
%A A. N. Safronov
%T Effects of particle structure in the three-body problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 420-437
%V 89
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a8/
%G ru
%F TMF_1991_89_3_a8
A. N. Safronov. Effects of particle structure in the three-body problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 420-437. http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a8/

[1] Castillejo L., Dalitz R. H., Dyson F. J., Phys. Rev., 101:1 (1956), 453–558 | DOI

[2] Dyson F. J., Phys. Rev., 106:1 (1957), 157–159 | DOI | Zbl

[3] Low F., Phys. Rev., 97 (1955), 1392–1398 | DOI | MR | Zbl

[4] Lee T. D., Phys. Rev., 95 (1954), 1329–1334 | DOI | MR | Zbl

[5] Chew G. F., Mandelstam S., Phys. Rev., 119:1 (1960), 467–477 | DOI | MR | Zbl

[6] Shirkov D. V., Serebryakov V. V., Mescheryakov V. A., Dispersionnye teorii silnykh vzaimodeistvii pri nizkikh energiyakh, Nauka, M., 1967

[7] Kolinz P., Skvairs E., Polyusa Redzhe v fizike chastits, Mir, M., 1971

[8] Fritzsch H., Gell-Mann M., Leutwyler H., Phys. Lett., 47B:4 (1973), 365–368 | DOI | MR

[9] Weinberg S., Phys. Rev. Lett., 31:7 (1973), 494–497 | DOI

[10] Bogolyubov P. N., Dorokhov A. E., EChAYa, 18:5 (1987), 917–959 | MR

[11] Matveev V. A., Sorba P., Nuovo Cim., 45A:2 (1978), 257–279 | DOI

[12] Jaffe R. L., Low F. F., Phys. Rev., D19:7 (1979), 2105–2118

[13] Wigner E. P., Eisenbud L., Phys. Rev., 72:1 (1947), 29–41 | DOI | MR

[14] Simonov Yu. A., Phys. Lett., 107B:1–2 (1981), 1–4 | DOI | MR

[15] Simonov Yu. A., YaF, 36:3 (1982), 722–731

[16] Kalashnikova Yu. S., Narodetskii I. M., Yursov V. P., YaF, 49:3 (1989), 632–643

[17] Abdurakhmanov A., Zubarev A. L., Z. Phys. A - Atoms and Nuclei, 322 (1985), 523–525 | DOI

[18] Kuperin Yu. A., Makarov K. A., Merkurev S. P., Motovilov A. K., Pavlov B. S., TMF, 76:2 (1988), 242–260 ; 75:3, 431–444 | MR | MR

[19] Neudatchin V. G., Obukhovsky I. T., Kukulin V. I., Golovanova N. F., Phys. Rev., C11:1 (1975), 128–136

[20] Lomon E. L., AIP Conf. Proc., 110, AIP, New York, 1984, 117–133 | DOI

[21] Safronov A. N., Phys. Lett., 163B:1, 2, 3, 4 (1985), 226–230 ; 124B (1983), 149–153 | DOI | DOI

[22] Safronov A. N., YaF, 43:3 (1986), 666–675; 41:1 (1985), 177–186 ; 38:6 (1983), 1515–1524 | MR

[23] Safronov A. N., TMF, 62:1 (1985), 97–104

[24] Safronov A. N., Proc. of Third Intern. Symp. on Pion-Nucleon and Nucleon-Nucleon Physics, LNPI, Leningrad, 1989, 263–268

[25] Safronov A. N., EChAYa, 21:5 (1990), 1187–1250

[26] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[27] Chirardi G. C., Rimini A., J. Math. Phys., 5 (1964), 722 | DOI | MR

[28] Alt E. O., Grassberger P., Sandhas W., Nucl. Phys., B2:2 (1967), 167–180 | DOI

[29] Faustov R. N., Ann. of Phys., 78 (1973), 176–189 | DOI

[30] Safronov A. N., TMF, 69:1 (1986), 88–99

[31] Kadyshevskii V. G., Mir-Kasimov R. M., Skachkov N. B., EChAYa, 2:3 (1972), 635–690

[32] Wick G. C., Ann. of Phys., 18:1 (1962), 65–80 | DOI | MR | Zbl

[33] Safronov A. N., Trekhmernaya kovariantnaya formulirovka relyativistskoi problemy trekh tel, Dep. No 2036-V87, VINITI, M., 1987, 95 pp.; “Микроскопические методы в теории систем нескольких частиц”, Материалы Международного семинара, Т. 1 (15–21 августа 1988 г.), Калинин, 1988, 11–15