Non-lie symmetry of Galileo-invariant equation for a particle with spin $s=1/2$
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 413-419 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the symmetry of a Galileo-invariant spinor equation in the class of first-order differential operators. It is established that the set of first-order symmetry operators contains a superalgebra that is a superextension of the Galileo algebra.
@article{TMF_1991_89_3_a7,
     author = {R. Z. Zhdanov and W. I. Fushchych},
     title = {Non-lie symmetry of {Galileo-invariant} equation for a~particle with spin $s=1/2$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {413--419},
     year = {1991},
     volume = {89},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a7/}
}
TY  - JOUR
AU  - R. Z. Zhdanov
AU  - W. I. Fushchych
TI  - Non-lie symmetry of Galileo-invariant equation for a particle with spin $s=1/2$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 413
EP  - 419
VL  - 89
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a7/
LA  - ru
ID  - TMF_1991_89_3_a7
ER  - 
%0 Journal Article
%A R. Z. Zhdanov
%A W. I. Fushchych
%T Non-lie symmetry of Galileo-invariant equation for a particle with spin $s=1/2$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 413-419
%V 89
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a7/
%G ru
%F TMF_1991_89_3_a7
R. Z. Zhdanov; W. I. Fushchych. Non-lie symmetry of Galileo-invariant equation for a particle with spin $s=1/2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 413-419. http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a7/

[1] Fuschich V. I., DAN SSSR, 246:5 (1979), 846–850 | MR

[2] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[3] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[4] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[5] Fuschich V. I., Shtelen V. M.,. Serov N. I., Simmetriinyi analiz i tochnye resheniya nelineinykh uravnenii matematicheskoi fiziki, Naukova dumka, Kiev, 1989 | MR

[6] Fuschich V. I., TMF, 7:1 (1971), 3–12 | MR

[7] Shapovalov V. N., Ekle G. G., Algebraicheskie svoistva uravneniya Diraka, Izd-vo Kalmytskogo gosuniversiteta, Elista, 1972

[8] Fushchich W. I., Nikitin A. G., Lett. Nuovo Cim., 16:3 (1976), 81–85 | DOI | MR

[9] Fuschich V. I., Nikitin A. G., Simmetriya uravnenii Maksvella, Naukova dumka, Kiev, 1983 | MR

[10] Fuschich V. I., Nikitin A. G., Simmetriya uravnenii kvantovoi mekhaniki, Nauka, M., 1990 | MR

[11] Levi-Leblond J.-M., Commun. Math. Phys., 6:4 (1967), 286–311 | DOI | MR

[12] Galindo A., Sanchez C., Amer. J. Phys., 29:9 (1961), 582–584 | DOI | MR | Zbl

[13] Fuschich V. I., Nikitin A. G., EChAYa, 12:3 (1981), 1157–1219

[14] Fuschich V. I., Zhdanov R. Z., Nelineinye spinornye uravneniya: simmetriya i tochnye resheniya, Naukova dumka, Kiev, 1991 | MR

[15] Zhdanov R. Z., “O primenenii metoda Li – Beklunda k issledovaniyu simmetriinykh svoistv uravneniya Diraka”, Teoretiko-gruppovye issledovaniya uravnenii matematicheskoi fiziki, In-t matematiki AN USSR, Kiev, 1985, 70–73 | MR | Zbl

[16] Fushchich W. I., Nikitin A. G., J. Phys. A: Math. Gen., 20:4 (1987), 537–549 | DOI | MR | Zbl