Solutions of Yang–Mills and Yang–Mills–Higgs equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 402-412 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Yang–Mills (YM) and Yang–Mills–Higgs (YMH) models are considered for arbitrary semisimple gauge Lie groups $G$. Ansatzes are introduced that reduce the YM and YMH equations to the equations of the model of a scalar field and ordinary differential equations (Nahm equations). With each solution of these equations there is associated a solution of the YM equations of instanton type or a solution of the YMH equations of monopole type. Solutions for the groups SU(2) and SU(3) are given as examples.
@article{TMF_1991_89_3_a6,
     author = {A. D. Popov},
     title = {Solutions of {Yang{\textendash}Mills} and {Yang{\textendash}Mills{\textendash}Higgs} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {402--412},
     year = {1991},
     volume = {89},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a6/}
}
TY  - JOUR
AU  - A. D. Popov
TI  - Solutions of Yang–Mills and Yang–Mills–Higgs equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 402
EP  - 412
VL  - 89
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a6/
LA  - ru
ID  - TMF_1991_89_3_a6
ER  - 
%0 Journal Article
%A A. D. Popov
%T Solutions of Yang–Mills and Yang–Mills–Higgs equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 402-412
%V 89
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a6/
%G ru
%F TMF_1991_89_3_a6
A. D. Popov. Solutions of Yang–Mills and Yang–Mills–Higgs equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 402-412. http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a6/

[1] Actor A., Rev. Mod. Phys., 51:3 (1979), 461–525 | DOI | MR

[2] Prasad M. K., Geometricheskie idei v fizike, Mir, M., 1983, 64–96 | MR

[3] Radzharaman R., Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985

[4] Ivanova T. A., Popov A. D., YaF, 51:1 (1990), 259–266 | MR

[5] Popov A. D., TMF, 83:2 (1990), 207–221 | MR

[6] Popov A. D., YaF, 51:3 (1990), 883–891 | MR

[7] Ivanova T. A., UMN, 46:4 (1991), 151–152 ; Ivanova T. A., Popov A. D., Lett. Math. Phys. (to appear) | MR | MR

[8] Savvidy G. K., Phys. Lett., 71B:1 (1977), 133–138 ; Matinyan S. G., Savvidy G. K., Nucl. Phys., B134:3 (1978), 539–545 | DOI | MR | DOI | MR

[9] Nahm W., Lect. Notes Phys., 180, 1983, 456–466 | DOI

[10] Monopoli: Topologicheskie i variatsionnye metody, Sb. statei, Mir, M., 1989

[11] Ward R. S., Phys. Lett., 112A:1–2 (1985), 3–5 | DOI | MR

[12] Hitchin N. J., Commun. Math. Phys., 89 (1983), 145–190 ; Donaldson S. K., Commun. Math. Phys., 96 (1985), 387–407 ; Hartubise J., Commun. Math. Phys., 100 (1985), 191–196 | DOI | MR | Zbl | DOI | MR | DOI | MR

[13] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, Princeton Univ. Press, Princeton, 1988 | MR | Zbl

[14] Bogoyavlensky O. I., Commun. Math. Phys., 51:3 (1976), 201–209 | DOI | MR

[15] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[16] Olshanetsky M. A., Perelomov A. M., Phys. Rep., 71:5 (1981), 313–400 ; Переломов А. М., Интегрируемые системы классической механики и алгебры Ли, Наука, М., 1990 | DOI | MR | Zbl

[17] Protogenov A. P., YaF, 29:2 (1979), 534–538

[18] Pervushin V. N., TMF, 45:3 (1980), 394–406 ; ЯФ, 36:1 (1982), 262–272 ; ЭЧАЯ, 15:5 (1984), 1073–1110 | MR | MR | Zbl

[19] Adler S. L., Phys. Rev., D18:2 (1978), 411–434 | MR

[20] Klouz F., Kvarki i partony, Mir, M., 1982 | MR

[21] Bogolyubov P. N., Dorokhov A. E., EChAYa, 18:5 (1987), 917–959 | MR

[22] Simonov Yu. A., YaF, 46:1 (1987), 317–320 ; 47:4 (1988), 1165–1175; 6, 1805–1811; Nucl. Phys., B307 (1988), 512–530 | MR | DOI

[23] Mandelstam S., Phys. Rev., D19:8 (1979), 2391–2409 ; 't Hooft G., Nucl. Phys., B138 (1978), 1–25 ; B153 (1979), 141–160 ; B190 (1981), 455–478 ; Phys. Scripta, 25:1–2 (1982), 133–142 | DOI | DOI | DOI | DOI