Lie-algebraic approach to nonlocal symmetries of integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 323-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A recursion operator is derived for a large class of equations that can be integrated by the inverse scattering method. For the obtained hierarchies of integrable equations a method is proposed for constructing an algebra of nonlocal symmetries. The complete set of dynamical variables corresponding to them is found. It is shown that all the nonlocal variables are the integrals of the densities of conservation laws. The structure of the obtained systems is illustrated by the example of the Zakharov–Shabat (AKNS) hierarchy.
@article{TMF_1991_89_3_a0,
     author = {V. E. Adler},
     title = {Lie-algebraic approach to nonlocal symmetries of integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--336},
     year = {1991},
     volume = {89},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a0/}
}
TY  - JOUR
AU  - V. E. Adler
TI  - Lie-algebraic approach to nonlocal symmetries of integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 323
EP  - 336
VL  - 89
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a0/
LA  - ru
ID  - TMF_1991_89_3_a0
ER  - 
%0 Journal Article
%A V. E. Adler
%T Lie-algebraic approach to nonlocal symmetries of integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 323-336
%V 89
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a0/
%G ru
%F TMF_1991_89_3_a0
V. E. Adler. Lie-algebraic approach to nonlocal symmetries of integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 3, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_1991_89_3_a0/

[1] Burtsev S. P., Zakharov V. E., Mikhailov A. V., TMF, 70:3 (1987), 323–341 | MR | Zbl

[2] Belinskii V. A., Zakharov V. E., ZhETF, 75:6 (1978), 1953–1971 | MR

[3] Calogero F., Degasperis A., Lett. Nuovo Cimento, 22 (1978), 138 | DOI | MR

[4] Ibragimov N. Kh., Shabat A. B., DAN SSSR, 244:1 (1979), 56–67 | MR

[5] Orlov A. Yu., Shulman E. I., Dopolnitelnye simmetrii integriruemykh sistem i predstavleniya konformnoi algebry, Preprint IAiE No 217, IAiE, Novosibirsk, 1984

[6] Orlov A. Yu., Shulman E. I., TMF, 64:2 (1985), 323–328 | MR | Zbl

[7] Orlov A. Yu., Shulman E. I., Dopolnitelnye simmetrii dvumernykh integriruemykh sistem, Preprint IAiE No 277, IAiE, Novosibirsk, 1985 | MR

[8] Orlov A. Yu., Schulman E. I., Lett. Math. Phys., 12 (1986), 171–179 | DOI | MR | Zbl

[9] Reiman A. G., Semenov-Tyan-Shanskii M. A., Frenkel I. B., DAN SSSR, 247:4 (1979), 802–804 | MR

[10] Reiman A. G., Zap. nauchn. semin. LOMI, 95, 1980, 3–54 | MR | Zbl

[11] Kulish P. P., Reiman A. G., Zap. nauchn. semin. LOMI, 123, 1983, 67–76 | MR | Zbl

[12] Reiman A. G., Zap. nauchn. semin. LOMI, 131, 1983, 118–127 | MR | Zbl

[13] Adler M., Invent. Math., 50:2 (1979), 219–248 | MR | Zbl

[14] Kostant B., London Math. Soc. Lect. Notes Ser., 34, 1979, 287–316 | Zbl

[15] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[16] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR

[17] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1982 | MR

[18] Mikhailov A. V., Olshanetsky M. A., Perelomov A. M., Commun. Math. Phys., 79:4 (1981), 473–488 | DOI | MR

[19] Svinolupov S. I., Sokolov V. V., Mat. zametki, 48:6 (1990), 91–97 | MR | Zbl