Three-dimensional Gross–Neveu model in an external magnetic field. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 2, pp. 211-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the leading order of the $1/N$ expansion, the (2 + l)-dimensional Gross–Neveu model in a constant external magnetic field is considered. It is shown that for $g>0$ ($g$ is the coupling constant) and arbitrarily small value of $H$ the chiral invariance of the model is spontaneously broken. For $g<0$, the symmetry, broken at $H=0$, is not restored at any arbitrarily large value of the external magnetic field.
@article{TMF_1991_89_2_a4,
     author = {K. G. Klimenko},
     title = {Three-dimensional {Gross{\textendash}Neveu} model in an~external magnetic {field.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {211--221},
     year = {1991},
     volume = {89},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a4/}
}
TY  - JOUR
AU  - K. G. Klimenko
TI  - Three-dimensional Gross–Neveu model in an external magnetic field. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 211
EP  - 221
VL  - 89
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a4/
LA  - ru
ID  - TMF_1991_89_2_a4
ER  - 
%0 Journal Article
%A K. G. Klimenko
%T Three-dimensional Gross–Neveu model in an external magnetic field. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 211-221
%V 89
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a4/
%G ru
%F TMF_1991_89_2_a4
K. G. Klimenko. Three-dimensional Gross–Neveu model in an external magnetic field. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 2, pp. 211-221. http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a4/

[1] Gross D. J., Neveu A., Phys. Rev., D10:10 (1974), 3235–3253

[2] Davydov A. S., Phys. Rep., 190:4–5 (1990), 191–306 | DOI | Zbl

[3] De Zhen P., Sverkhprovodimost metallov i splavov, Mir, M., 1988; Умэдзава Х., Мацумото Х., Татики М., Термополевая динамика и конденсированные состояния, Мир, М., 1986

[4] Rosenstein B., Warr B. J., Park S. H., Phys. Rev. Lett., 62:13 (1989), 1433–1436 | DOI

[5] Gat G., Kovner A., Rosenstein B., Phys. Lett., B240:1–2 (1990), 158–162 | DOI

[6] Klimenko K. G., Z. Phys. C, 37:3 (1988), 457–463 ; Okopinska A., Phys. Rev., D38:81 (1988), 2507–2517 ; Rosenstein B., Warr B. J., Park S. D., Phys. Rev., D39:10 (1989), 3088–3092 | DOI | MR

[7] Dittrich W., Fortschr. der Phys., 26:5 (1978), 289–356 | DOI | MR

[8] Schwinger J., Phys. Rev., 82:5 (1951), 664 | DOI | MR | Zbl

[9] Klevansky S. P., Lemmer R. H., Phys. Rev., D39:11 (1989), 3478–3489