@article{TMF_1991_89_2_a11,
author = {A. A. Bakasov},
title = {Dynamical model of single-mode laser. {I.~Regime} of stable stationary lasing},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {278--292},
year = {1991},
volume = {89},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a11/}
}
A. A. Bakasov. Dynamical model of single-mode laser. I. Regime of stable stationary lasing. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 2, pp. 278-292. http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a11/
[1] Bakasov A. A., Phys. Lett., 130:8–9 (1988), 461–466 | DOI | MR
[2] Andreev A. V., Emelyanov V. I., Ilinskii Yu. A., UFN, 131:4 (1980), 653–694 | DOI
[3] Arecchi F. T., Courtens E., Phys. Rev., A2:5 (1970), 1730–1737 | DOI
[4] Bonifacio R., Schwendimann P., Haake F., Phys. Rev., A4:1 (1971), 302–313 | DOI
[5] Haken H., Encyclopedia of physics, V. XXX/2c, Springer-Verlag, Berlin–Heidelberg–New York, 1970
[6] Haken H., Synergetics, Springer-Verlag, Berlin–Heidelberg–New York, 1978 | MR | Zbl
[7] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gos. izd. tekhn.-teor. lit., M.–L., 1950 | MR
[8] Chetaev N. G., Ustoichivost dvizheniya, Gos. izd. tekhn.-teor. lit., M.–L., 1955 | MR
[9] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966 | MR | Zbl
[10] Haken H., Ohno H., Opt. Comm., 16:1 (1976), 205–207 | DOI | MR
[11] Ohno H., Haken H., Phys. Lett., A59:4 (1976), 261–263 | DOI
[12] Lorenz E. N., J. Atmosph. Sci., 20:1 (1963), 130–163 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[13] Haken H., Z. Phys., 181:1 (1964), 96–124 | DOI | MR
[14] Arecchi F. T., Schultz-DuBois E. O.(eds.), Laser Handbook, V. I, North-Holland, Amsterdam, 1972
[15] Velarde M. G., Nonequilbrium Cooperative Phenomena in Physics and Related Fields, Plenum Press, New York–London, 1974
[16] Cvitanovic P. (ed.), University of Chaos, Adam Hilger Ltd., Bristol, 1984 | MR | Zbl
[17] Faddeev D. K., Sominskii I. S., Sbornik zadach po vysshei algebre, Nauka, M., 1968 | MR
[18] DeGiorgio V., Scully M. O., Phys. Rev., A2:4 (1970), 1170–1177 | DOI
[19] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR
[20] Bakasov A. A., Phys. Lett., A146:3 (1990), 209–261 | DOI | MR
[21] Abraham N. B., Mandel P., Narducci L. M., “Dynamical Instabilities and Pulsations in Lasers”, Progress in Optics, 25, 1988, 1–190 | DOI
[22] Zeghlache H., Mandel P., J. Opt. Soc. Amer., 2:1 (1985), 18–22 | DOI
[23] Sparrow C., The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl
[24] Roschin N. V., PMM, 42:5 (1978), 950–952 | MR
[25] Pade J., Rauh A., Tsarouhas G., Phys. Lett., A115:3 (1986), 93–96 | DOI | MR
[26] Bakasov A. A., Govorkov B. B., Jr., Stability theory of critical cases and the bifurcation points of the stationary solutions of the Lorenz model, Preprint I.C.T.P. IV/90/247, Trieste, 1990
[27] Fowler A. C., Gibbon J. D., McGuinness M. J., Physica, D4:2 (1982), 139–163 | MR | Zbl