Semiclassical asymptotics of quantum stochastic equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 2, pp. 163-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The time evolution of an open quantum system – a particle in a potential field under continuous observation – is described in the framework of the quantum stochastic calculus. Two types of stochastic wave equations are considered: prior, corresponding to nonselective measurements, and posterior, depending on the trajectories of selective measurements. An exactly solvable model of the measurement of the coordinates of a free particle is considered. By means of this model, the quantum Zeno paradox can be explained on the basis of the theory of posterior dynamics of the observables of open quantum systems. Semiclassical solutions are constructed for both types of quantum stochastic wave equation by a stochastic generalization of the WKB – Maslov method.
@article{TMF_1991_89_2_a0,
     author = {V. P. Belavkin and V. N. Kolokoltsov},
     title = {Semiclassical asymptotics of quantum stochastic equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--177},
     year = {1991},
     volume = {89},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a0/}
}
TY  - JOUR
AU  - V. P. Belavkin
AU  - V. N. Kolokoltsov
TI  - Semiclassical asymptotics of quantum stochastic equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 163
EP  - 177
VL  - 89
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a0/
LA  - ru
ID  - TMF_1991_89_2_a0
ER  - 
%0 Journal Article
%A V. P. Belavkin
%A V. N. Kolokoltsov
%T Semiclassical asymptotics of quantum stochastic equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 163-177
%V 89
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a0/
%G ru
%F TMF_1991_89_2_a0
V. P. Belavkin; V. N. Kolokoltsov. Semiclassical asymptotics of quantum stochastic equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 2, pp. 163-177. http://geodesic.mathdoc.fr/item/TMF_1991_89_2_a0/

[1] Belavkin V. P., Phys. Lett. A, 140 (1989), 355–358 | DOI | MR

[2] Belavkin V. P., J. Math. Phys., 12 (1990) | MR | Zbl

[3] Belavkin V. P., TMF, 62:3 (1985), 409–431 | MR

[4] Hudson R. L., Parthasarathy K. R., Commun. Math. Phys., 93 (1984), 301–323 | DOI | MR | Zbl

[5] Meyer P. A., Elements de Probabilites Quantique, Institute de Mathematique, Universite Louis Pasteur, Strasbourg, 1985 | Zbl

[6] Belavkin V. P., Rendi conti del seminario Matematico e Fisico di Milano, LVIII (1988), 177–193 | DOI | MR | Zbl

[7] Belavkin V. P., A nonadapted stochastic calculus and non Markovian quantum evolution, No 31, Centro Matematico V. Volterra, Universita degli studi di Roma II, 1990

[8] Belavkin V. P., Staszewski P., A stochastic solution of Zeno paradox for quantum Brownian motion, No 28, Centro Matematico V. Volterra, Universita degli studi di Roma II, 1990 | MR

[9] Albeverio S., Arede T., de Faria M., Remarks on non linear filtering problems: white noise representation and asymptotic expansions, Preprint, 1990 | MR

[10] Pardoux E., “Filtrage non lineair et equations aux derivees partielles stochastiques associees”, Ecole d'ete de Probabilites de Saint-Flour, 1989 | MR

[11] Stratonovich R. L., Uslovnye markovskie protsessy i ikh primenenie k teorii optimalnogo upravleniya, MGU, M., 1966 | MR

[12] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[13] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 | MR

[14] Maslov V. P., ZhVMiMF, 1:4 (1961), 638–663 | MR | Zbl

[15] Dobrokhotov S. Yu., Kolokoltsov V. N., Maslov V. P., TMF, 87:3 (1991), 323–375 | MR | Zbl

[16] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[17] Misra B., Sudarshan E. C. G., J. Math. Phys., 18 (1973), 756 | DOI | MR