On the infinite number of three-particle bound states of a system of three quantum lattice particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 94-104
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that in a system of three quantum particles on a threedimensional lattice interacting by means of attractive two-body contact potentials there exists an infinite number of three-particle bound states.
@article{TMF_1991_89_1_a8,
author = {S. N. Lakaev},
title = {On the infinite number of three-particle bound states of a~system of three quantum lattice particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {94--104},
year = {1991},
volume = {89},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a8/}
}
TY - JOUR AU - S. N. Lakaev TI - On the infinite number of three-particle bound states of a system of three quantum lattice particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 94 EP - 104 VL - 89 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a8/ LA - ru ID - TMF_1991_89_1_a8 ER -
S. N. Lakaev. On the infinite number of three-particle bound states of a system of three quantum lattice particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 94-104. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a8/
[1] Efimov V. N., YaF, 12:5 (1970), 1080–1091
[2] Amodo R. D., Noble J. V., Phys. Lett. Ser. B, 35:1 (1971), 25–27 | DOI
[3] Amodo R. D., Noble J. V., Phys. Rev. Ser. D, 5:8 (1972), 1992–2002 | DOI
[4] Yafaev D. R., Mat. sb., 94(136):4(8) (1974), 567–593 | MR | Zbl
[5] Mattis D. C., Rev. Mod. Phys., 58 (1986), 31 | DOI | MR
[6] Minlos R. A., Sov. Sci. C. Math. Phys., 7 (1988), 235–280 | MR | Zbl
[7] Mogilner A. I., Diss. kand. fiz.-mat. nauk, Institut fiziki metallov Uralskogo otdeleniya AN SSSR, Sverdlovsk, 1989
[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, Mir, M., 1982 | MR
[9] Lakaev S. N., TMF, 44:3 (1980), 381–386 | MR | Zbl
[10] Gokhberg I. Ts., Krein M. G., UMN, XIII:2(80) (1958), 3–72 | MR