Fractals in quantum theory: analytical and numerical approaches
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 73-79
Cet article a éte moissonné depuis la source Math-Net.Ru
Quantum systems whose evolution has a fractal nature are considered for the example of the evolution of a wave packet in quantum mechanics. Quantum states in which the evolution of the expectation values of certain operators are described by fractal curves are constructed. The fractal dimensions of these curves are calculated. The presence of an exact analytical result makes it possible to compare the different methods of calculating the fractal dimensions.
@article{TMF_1991_89_1_a6,
author = {P. K. Silaev and E. N. Tyurin and O. A. Khrustalev},
title = {Fractals in quantum theory: analytical and numerical approaches},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {73--79},
year = {1991},
volume = {89},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a6/}
}
TY - JOUR AU - P. K. Silaev AU - E. N. Tyurin AU - O. A. Khrustalev TI - Fractals in quantum theory: analytical and numerical approaches JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 73 EP - 79 VL - 89 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a6/ LA - ru ID - TMF_1991_89_1_a6 ER -
P. K. Silaev; E. N. Tyurin; O. A. Khrustalev. Fractals in quantum theory: analytical and numerical approaches. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 73-79. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a6/
[1] Abbott L. F., Wise M. B., Am. J. Phys., 49 (1981), 37 | DOI | MR
[2] Cannata F., Ferrari L., Am. J. Phys., 56 (1988), 721 | DOI | MR
[3] Hogg T., Huberman B. A., Wise M. B., Phys. Rev. Lett., 48 (1982), 711 | DOI | MR
[4] Liebovitch L. S., Toth T., Phys. Lett., A141 (1989), 385 | MR
[5] Hon X. J., Gilmore R., Mindlin G. B., Solary H. G., Phys. Lett., A151 (1990), 43 | Zbl
[6] Farrell M. E., Passamante A., Hediger T., Phys. Rev., A41 (1990), 6591 | DOI | MR
[7] Grassberger P., Procaccia I., Phys. Rev. Lett., 50 (1983), 346 | DOI | MR