Calculation of Green's function of an electron on a lattice in a uniform magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 48-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A closed expression is obtained for the Green's function of a particle making a random walk on a lattice with set of steps $\mathscr S$ in a uniform magnetic field. The connection with noncommutative geometry is discussed.
@article{TMF_1991_89_1_a4,
     author = {A. A. Belov and Yu. E. Lozovik},
     title = {Calculation of {Green's} function of an~electron on a~lattice in a~uniform magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {48--55},
     year = {1991},
     volume = {89},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a4/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - Yu. E. Lozovik
TI  - Calculation of Green's function of an electron on a lattice in a uniform magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 48
EP  - 55
VL  - 89
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a4/
LA  - ru
ID  - TMF_1991_89_1_a4
ER  - 
%0 Journal Article
%A A. A. Belov
%A Yu. E. Lozovik
%T Calculation of Green's function of an electron on a lattice in a uniform magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 48-55
%V 89
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a4/
%G ru
%F TMF_1991_89_1_a4
A. A. Belov; Yu. E. Lozovik. Calculation of Green's function of an electron on a lattice in a uniform magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 48-55. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a4/

[1] Kohmoto M., Hatsugai Y., Phys. Rev., B41:13 (1990), 9527–9529 | DOI

[2] Marston J. B., Affleck I., Phys. Rev., B39:16 (1989), 11538–11558 | DOI | MR

[3] Hasegawa et al., Phys. Rev. Lett., 63:8 (1989), 907–910 | DOI | MR

[4] Khveshchenko D. V., Wiegmann P. B., Mod. Phys. Lett., 4:1 (1990), 17–28 | DOI

[5] Wen X. G. et al., Phys. Rev., 39:16 (1989), 11413–11423 | DOI

[6] Andre G., Aubry S., Ann. Israel. Phys. Soc., 3 (1980), 133 | MR | Zbl

[7] Hofstadter D. R., Phys. Rev., 14:6 (1976), 2239–2249 | DOI

[8] Tang C., Kohmoto M., Phys. Rev., 34:3 (1986), 2041–2044 | DOI

[9] Ostlund S., Pandit R., Phys. Rev., 29:3 (1984), 1394–1414 | DOI | MR

[10] Wilkinson B. M., Proc. R. Soc. Lond., A391 (1984), 305–350 | DOI | MR

[11] Sinai Ya. G., J. of Stat. Phys., 46:5/6 (1987), 861–909 | DOI | MR

[12] Simon B., Adv. Appl. Math., 3 (1982), 463–490 | DOI | MR | Zbl

[13] Thouless D. J., Commun. Math. Phys., 127:1 (1990), 187–193 | DOI | MR | Zbl

[14] Guillement J. P. et al., J. Phys. France, 50 (1989), 2019–2058 | DOI

[15] Helffer B., Le Papillon de Hofstadter Revisite, Preprint LMENS-90-4, Paris

[16] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[17] Reshetikhin N. Yu. i dr., Algebra i analiz, 1:1 (1989), 178–206 | MR

[18] Belov A. A. i dr., Pisma v ZhETF, 52:2 (1990), 767–768