Wave solutions of semilinear parabolic equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 25-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Interactions of nonlinear waves (kinks) described by semilinear parabolic equations are investigated. Exact two-phase solutions that generalize Newell's solutions are constructed for nonlinearities having the form of a cubic polynomial. An asymptotic solution describing the interaction of kinks propagating in a strip between the roots of the nonlinearity is obtained for the Kolmogorov–Petrovskii–Piskunov–Fisher equation.
@article{TMF_1991_89_1_a3,
     author = {V. G. Danilov and P. Yu. Subochev},
     title = {Wave solutions of semilinear parabolic equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--47},
     year = {1991},
     volume = {89},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a3/}
}
TY  - JOUR
AU  - V. G. Danilov
AU  - P. Yu. Subochev
TI  - Wave solutions of semilinear parabolic equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 25
EP  - 47
VL  - 89
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a3/
LA  - ru
ID  - TMF_1991_89_1_a3
ER  - 
%0 Journal Article
%A V. G. Danilov
%A P. Yu. Subochev
%T Wave solutions of semilinear parabolic equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 25-47
%V 89
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a3/
%G ru
%F TMF_1991_89_1_a3
V. G. Danilov; P. Yu. Subochev. Wave solutions of semilinear parabolic equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 25-47. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a3/

[1] Kolmogorov A. N., Petrovskii I. G., Piskunov I. S., Byulleten MGU, sektsiya A, 1:6 (1937)

[2] Ushiyma K., J. Math. Kyoto Univ., 18:3 (1978), 453 | DOI | MR

[3] Volpert A. I., “O rasprostranenii voln, opisyvaemykh nelineinymi parabolicheskimi uravneniyami”, V kn.: I. G. Petrovskii, Izbrannye trudy. Differentsialnye uravneniya. Teoriya veroyatnosti, Nauka, M., 1987, 333–357 | MR

[4] Newell A. C., Whitehead J. A., J. Fluid. Mech., 38 (1969), 279 | DOI | MR | Zbl

[5] Kawahara T., Tanaka M., Phys. Lett. A, 97 (1983), 311 | DOI | MR

[6] Maslov V. P., Danilov V. G., Volosov K. A., Matematicheskoe modelirovanie protsessov teplomassoperenosa, Nauka, M., 1987 | MR

[7] Danilov V. G., Subochev P. Yu., Tochnye odnofaznye i dvukhfaznye resheniya polulineinykh parabolicheskikh uravnenii, Preprint MIAN SSSR, 1988

[8] Ablowits M., Zeppetella A., Bull. Math. Biol., 41:6 (1979), 835 | DOI | MR

[9] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[10] Dobrokhotov S. Yu., Maslov V. P., “Mnogomernye ryady Dirikhle v zadache ob asimptotike spektralnykh serii nelineinykh ellipticheskikh operatorov”, Itogi nauki i tekhniki. VINITI AN SSSR. Sovremennye problemy matematiki, 23, VINITI, M., 1983, 137–222 | MR

[11] Weiss J., Tabor M., Canevale G., J. Math. Phys., 24 (1983), 522 | DOI | MR | Zbl

[12] Cariello F., Tabor M., Physica D, 32 (1989), 77 | DOI | MR

[13] Gonchar A. A., Matem. sb., 118:4 (1982), 535 | MR | Zbl

[14] Danilov V. G., Matem. zametki, 46:1 (1989), 115–117 | MR | Zbl

[15] Berman V. S., Fizika goreniya i vzryva, 22:2 (1986), 76–83

[16] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971 | MR