Wave solutions of semilinear parabolic equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 25-47
Voir la notice de l'article provenant de la source Math-Net.Ru
Interactions of nonlinear waves (kinks) described by semilinear parabolic equations are investigated. Exact two-phase solutions that generalize Newell's solutions are constructed for nonlinearities having the form of a cubic polynomial. An asymptotic solution describing the interaction of kinks propagating in a strip between the roots of the nonlinearity is obtained for the Kolmogorov–Petrovskii–Piskunov–Fisher equation.
@article{TMF_1991_89_1_a3,
author = {V. G. Danilov and P. Yu. Subochev},
title = {Wave solutions of semilinear parabolic equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {25--47},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a3/}
}
V. G. Danilov; P. Yu. Subochev. Wave solutions of semilinear parabolic equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 25-47. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a3/