Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the Feynman--Kac formula
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 18-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider operators in $L_2(K)$, where $K$ is a local field that is a sum of the operator of convolution with a generalized function and multiplication by a function. A criterion of self-adjointness is given, and some results on the discrete spectrum are obtained. An analog of the Feynman–Kac formula is derived.
@article{TMF_1991_89_1_a2,
     author = {R. S. Ismagilov},
     title = {Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the {Feynman--Kac} formula},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {18--24},
     publisher = {mathdoc},
     volume = {89},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a2/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the Feynman--Kac formula
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 18
EP  - 24
VL  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a2/
LA  - ru
ID  - TMF_1991_89_1_a2
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the Feynman--Kac formula
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 18-24
%V 89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a2/
%G ru
%F TMF_1991_89_1_a2
R. S. Ismagilov. Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the Feynman--Kac formula. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 18-24. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a2/