Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the Feynman--Kac formula
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 18-24
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider operators in $L_2(K)$, where $K$ is a local field that is a sum
of the operator of convolution with a generalized function and multiplication by a function. A criterion of self-adjointness is given, and some results on the discrete spectrum are obtained. An analog of the Feynman–Kac formula is derived.
@article{TMF_1991_89_1_a2,
author = {R. S. Ismagilov},
title = {Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the {Feynman--Kac} formula},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {18--24},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a2/}
}
TY - JOUR AU - R. S. Ismagilov TI - Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the Feynman--Kac formula JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 18 EP - 24 VL - 89 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a2/ LA - ru ID - TMF_1991_89_1_a2 ER -
%0 Journal Article %A R. S. Ismagilov %T Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the Feynman--Kac formula %J Teoretičeskaâ i matematičeskaâ fizika %D 1991 %P 18-24 %V 89 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a2/ %G ru %F TMF_1991_89_1_a2
R. S. Ismagilov. Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the Feynman--Kac formula. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 18-24. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a2/