Multidimensional leray residues and effective masses of a lattice model
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 156-160
Cet article a éte moissonné depuis la source Math-Net.Ru
A single-particle model of a multidimensional cubic lattice based on the theory of extensions is considered. For this model, a formula is obtained for the sum of the effective masses by applying multidimensional Leray residues to a certain meromorphic form on the Riemann space of the quasimomentum.
@article{TMF_1991_89_1_a13,
author = {S. V. Frolov},
title = {Multidimensional leray residues and effective masses of a~lattice model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {156--160},
year = {1991},
volume = {89},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a13/}
}
S. V. Frolov. Multidimensional leray residues and effective masses of a lattice model. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 156-160. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a13/
[1] Evstratov V. V., Pavlov B. S., “Lattice models of solids”, Collection of papers, Devoted to the memory of R. Hoegh-Krohn, Springer, 1990
[2] Lere Zh., Differentsialnoe i integralnoe ischisleniya na kompleksnom analiticheskom mnogoobrazii, IL, M., 1961 | MR
[3] Firsova N. E., “Rimanova poverkhnost kvaziimpulsa i teoriya rasseyaniya dlya vozmuschennogo operatora Khilla”, Matematicheskie voprosy teorii rasprostraneniya voln, no. 7, LGU, L., 1975, 183–196 | MR
[4] Firsova N. E., TMF, 37:2 (1978), 281–288 | MR | Zbl
[5] Pavlov B. S., Frolov S. V., TMF, 89:1 (1991), 3–10 | MR
[6] Pavlov B. S., Frolov S. V., TMF, 87:3 (1991), 456–472 | MR | Zbl